Descripteur



Etendre la recherche sur niveau(x) vers le bas
Extraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image / Wenfu Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)
![]()
[article]
Titre : Extraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image Type de document : Article/Communication Auteurs : Wenfu Wu, Auteur ; Jiahua Teng, Auteur ; Qimin Cheng, Auteur ; Songjing Guo, Auteur Année de publication : 2021 Article en page(s) : pp 161-170 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] chatoiement
[Termes descripteurs IGN] cohérence
[Termes descripteurs IGN] cohérence temporelle
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] segmentation multi-échelle
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surface imperméableRésumé : (Auteur) The continuous increasing of impervious surface (IS) hinders the sustainable development of cities. Using optical images alone to extract IS is usually limited by weather, which obliges us to develop new data sources. The obvious differences between natural and artificial targets in interferometric synthetic-aperture radar coherence images have attracted the attention of researchers. A few studies have attempted to use coherence images to extract IS—mostly single-temporal coherence images, which are affected by de-coherence factors. And due to speckle, the results are rather fragmented. In this study, we used time-series coherence images and introduced multi-resolution segmentation as a postprocessing step to extract IS. From our experiments, the results from the proposed method were more complete and achieved considerable accuracy, confirming the potential of time-series coherence images for extracting IS. Numéro de notice : A2021-240 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.3.161 date de publication en ligne : 01/03/2021 En ligne : https://doi.org/10.14358/PERS.87.3.161 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97264
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 3 (March 2021) . - pp 161-170[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021031 SL Revue Centre de documentation Revues en salle Disponible A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery / Mehdi Khoshboresh Masouleh in Applied geomatics, vol 12 n° 2 (June 2020)
![]()
[article]
Titre : A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery Type de document : Article/Communication Auteurs : Mehdi Khoshboresh Masouleh, Auteur ; Reza Shah-Hosseini, Auteur Année de publication : 2020 Article en page(s) : pp 107 - 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] gestion de trafic
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] modèle orienté objet
[Termes descripteurs IGN] orthophotographie
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] trafic routier
[Termes descripteurs IGN] véhicule automobileRésumé : (auteur) Automatic car extraction (ACE) from high-resolution airborne imagery (i.e., true-orthophoto) has been a hot research topic in the field of photogrammetry and machine learning. ACE from high-resolution airborne imagery is the most suitable method for control and monitoring practices in large cities such as traffic management. The use of deep learning–based feature extraction methods, such as convolutional neural networks, have been providing state-of-the-art performance in the last few years, particularly, these techniques have been successfully applied to automatic object extraction from images. In this paper, we proposed a novel hybrid method to take advantage of the semantic segmentation of high-resolution airborne imagery to ACE that is realized based on the combination of deep convolutional neural networks and restricted Boltzmann machine (RBM). This hybrid method is called RBMDeepNet. We trained and tested our model on the ISPRS Potsdam and Vaihingen benchmark datasets (non-big data) which is more challenging for ACE. Here, Potsdam data is a true-color dataset, and Vaihingen data is a false-color dataset. The results obtained in the present study showed that the proposed method for ACE from high-resolution airborne imagery achieves a 7% improvement in accuracy with about 10% improvement in processing time compared to similar methods. Numéro de notice : A2020-558 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-019-00285-4 date de publication en ligne : 06/08/2019 En ligne : https://doi.org/10.1007/s12518-019-00285-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95868
in Applied geomatics > vol 12 n° 2 (June 2020) . - pp 107 - 119[article]Object-based automatic multi-index built-up areas extraction method for WorldView-2 satellite imagery / Zhenhui Sun in Geocarto international, Vol 35 n° 8 ([01/06/2020])
![]()
[article]
Titre : Object-based automatic multi-index built-up areas extraction method for WorldView-2 satellite imagery Type de document : Article/Communication Auteurs : Zhenhui Sun, Auteur ; Qingyan Meng, Auteur Année de publication : 2020 Article en page(s) : pp 801 - 817 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Normalized Difference Water Index
[Termes descripteurs IGN] optimisation par essaim de particules
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) The WorldView-2 high spatial resolution satellite with eight multispectral imaging bands is ideally suited for extracting built-up areas (BUs) from remote sensing images. In this study, an object-based automatic multi-index BUs extraction method was developed. First, several indices, including BUs extraction index (NBEIr-c), vegetation extraction index(NDVInir2-r) and water extraction index (NDWI b-nir1), were developed to obtain the BUs, vegetation and water maps, and then the fractional-order Darwinian particle swarm optimization (FODPSO) algorithm was employed to automatically segment the multi-index images and obtained BUs, water, vegetation and bare soil (BS) information. Finally, the extracted BUs results were optimized via an object-based analysis method and the results were compared with those of two other relevant indices, which confirmed the proposed method had a higher accuracy and exhibited higher performance when separating the BS from the BUs. Numéro de notice : A2020-273 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1544290 date de publication en ligne : 07/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1544290 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95058
in Geocarto international > Vol 35 n° 8 [01/06/2020] . - pp 801 - 817[article]Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable / Lei Shi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable Type de document : Article/Communication Auteurs : Lei Shi, Auteur ; Pingxiang Li, Auteur ; Jie Yang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4454 - 4471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bruit (théorie du signal)
[Termes descripteurs IGN] coin réflecteur
[Termes descripteurs IGN] dégradation du signal
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] étalonnage
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] interruption du signal
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] polarisation croisée
[Termes descripteurs IGN] rétrodiffusion de BraggRésumé : (auteur) In this article, we propose a polarimetric calibration (PolCal) algorithm to estimate the system crosstalk, cross-polarization (x-pol), and co-polarization (co-pol) channel imbalance (CI) when ground corner reflectors (CRs) are unavailable. The current PolCal process requires at least one trihedral CR to determine the co-pol CI. However, the deployment of ground CRs is costly and may even be impossible in some areas. To calibrate a polarimetric image without CRs, our proposed method automatically extracts the volume-dominated and Bragg-like pixels as a reference to estimate the crosstalk, x-pol, and co-pol CI values. Then, a first-order polynomial model is exploited to fit the co-pol CI to further improve calibration accuracy. In the experimental section, we demonstrate the effectiveness of our proposed method with data from two of China’s newly developed very high-resolution systems. The experiments confirmed that the proposed workflow can be considered as a feasible calibration scheme when the ground deployment of CRs is impossible, and it is also an effective analysis tool for the assessment of calibrated products. Numéro de notice : A2020-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2964732 date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2964732 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95109
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4454 - 4471[article]Integration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model / Nadeem Fareed in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
![]()
[article]
Titre : Integration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model Type de document : Article/Communication Auteurs : Nadeem Fareed, Auteur ; Khushbakht Rehman, Auteur Année de publication : 2020 Article en page(s) : 26 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] agriculture de précision
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] structure-from-motion
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] télédétectionRésumé : (auteur) Automated feature extraction from drone-based image point clouds (DIPC) is of paramount importance in precision agriculture (PA). PA is blessed with mechanized row seedlings to attain maximum yield and best management practices. Therefore, automated plantation rows extraction is essential in crop harvesting, pest management, and plant grow-rate predictions. Most of the existing research is consists on red, green, and blue (RGB) image-based solutions to extract plantation rows with the minimal background noise of test study sites. DIPC-based DSM row extraction solutions have not been tested frequently. In this research work, an automated method is designed to extract plantation row from DIPC-based DSM. The chosen plantation compartments have three different levels of background noise in UAVs images, therefore, methodology was tested under different background noises. The extraction results were quantified in terms of completeness, correctness, quality, and F1-score values. The case study revealed the potential of DIPC-based solution to extraction the plantation rows with an F1-score value of 0.94 for a plantation compartment with minimal background noises, 0.91 value for a highly noised compartment, and 0.85 for a compartment where DIPC was compromised. The evaluation suggests that DSM-based solutions are robust as compared to RGB image-based solutions to extract plantation-rows. Additionally, DSM-based solutions can be further extended to assess the plantation rows surface deformation caused by humans and machines and state-of-the-art is redefined. Numéro de notice : A2020-260 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9030151 date de publication en ligne : 06/03/2020 En ligne : https://doi.org/10.3390/ijgi9030151 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95020
in ISPRS International journal of geo-information > vol 9 n° 3 (March 2020) . - 26 p.[article]Sea-land segmentation using deep learning techniques for Landsat-8 OLI imagery / Ting Yang in Marine geodesy, Vol 43 n° 2 (March 2020)
PermalinkAutomated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkAn indoor navigation model and its network extraction / Filippo Mortari in Applied geomatics, Vol 11 n° 4 (December 2019)
PermalinkExtracting urban landmarks from geographical datasets using a random forests classifier / Yue Lin in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
PermalinkMapping urban fingerprints of odonyms automatically extracted from French novels / Ludovic Moncla in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
PermalinkAccurate detection of built-up areas from high-resolution remote sensing imagery using a fully convolutional network / Yihua Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)
PermalinkAutomatic extraction of accurate 3D tie points for trajectory adjustment of mobile laser scanners using aerial imagery / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkBuilding detection and regularisation using DSM and imagery information / Yousif A. Mousa in Photogrammetric record, vol 34 n° 165 (March 2019)
PermalinkLand cover classification in combined elevation and optical images supported by OSM data, mixed-level features, and non-local optimization algorithms / Dimitri Bulatov in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)
PermalinkWebscraping, bigdata et analyse spatiale de données immobilières : réponse à un projet ESPON au sein de l'UMS RIATE / Marc Lieury (2019)
PermalinkFictive motion extraction and classification / Ekaterina Egorova in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)
PermalinkNovel fusion approach on automatic object extraction from spatial data: case study Worldview-2 and TOPO5000 / Umut G. Sefercik in Geocarto international, vol 33 n° 10 (October 2018)
PermalinkA deep learning approach to DTM extraction from imagery using rule-based training labels / Caroline M. Gevaert in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
PermalinkDésambiguïsation des entités spatiales par apprentissage actif / Amal Chihaoui in Revue internationale de géomatique, vol 28 n° 2 (avril - juin 2018)
PermalinkGenerating vague neighbourhoods through data mining of passive web data / Paul Brindley in International journal of geographical information science IJGIS, vol 32 n° 3-4 (March - April 2018)
PermalinkMultisource remote sensing data classification based on convolutional neural network / Xiaodong Xu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
PermalinkAutomated delineation of wildfire areas using Sentinel-2 satellite imagery / Mira Weirather in GI Forum, vol 2018 n° 1 ([01/01/2018])
PermalinkFusion tardive d’images SPOT-6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine / Cyril Wendl (2018)
![]()
PermalinkPermalinkComparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas / Zakaria Adiri in Advances in space research, vol 60 n° 11 (1 December 2017)
PermalinkTowards a multi-scale approach for an Earth observation-based assessment of natural resource exploitation in conflict regions / Elisabeth Schoepfer in Geocarto international, vol 32 n° 10 (October 2017)
PermalinkA graph-based approach to detect spatiotemporal dynamics in satellite image time series / Fabio Guttler in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkSimultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks / Rasha Alshehhi in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkAnalytical and numerical investigations on the accuracy and robustness of geometric features extracted from 3D point cloud data / André Dittrich in ISPRS Journal of photogrammetry and remote sensing, vol 126 (April 2017)
PermalinkIndustrialisation des processus d'extraction d'objets à partir de données photogrammétriques par drones / Jérémie Brossard in XYZ, n° 150 (mars - mai 2017)
PermalinkObject-based water body extraction model using Sentinel-2 satellite imagery / Gordana Kaplan in European journal of remote sensing, vol 50 n° 1 (2017)
PermalinkRaft cultivation area extraction from high resolution remote sensing imagery by fusing multi-scale region-line primitive association features / Wang Min in ISPRS Journal of photogrammetry and remote sensing, vol 123 (January 2017)
PermalinkTélédétection pour l'observation des surfaces continentales, Volume 1. Observation des surfaces continentales par télédétection optique / Nicolas Baghdadi (2017)
PermalinkExtracting building patterns with multilevel graph partition and building grouping / Shihong Du in ISPRS Journal of photogrammetry and remote sensing, vol 122 (December 2016)
PermalinkHyperspectral feature extraction using total variation component analysis / Behnood Rasti in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)
PermalinkAutomatic extraction of road networks from GPS traces / Jia Qiu in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 8 (August 2016)
PermalinkSupervised classification of very high resolution optical images using wavelet-based textural features / Olivier Regniers in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)
PermalinkKernel-based domain-invariant feature selection in hyperspectral images for transfer learning / Claudio Persello in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)
PermalinkActive-metric learning for classification of remotely sensed hyperspectral images / E. Pasolli in IEEE Transactions on geoscience and remote sensing, vol 54 n° 4 (April 2016)
PermalinkFusion of hyperspectral images and digital surface models for urban object extraction / Janja Avbelj (2016)
PermalinkMise en place de procédures automatiques en vue d’accélérer la production des plans topographiques au sein de l’entreprise Techni Drone / Kévin Javerliat (2016)
PermalinkRoad vectorisation from high-resolution imagery based on dynamic clustering using particle swarm optimisation / Fateme Ameri in Photogrammetric record, vol 30 n° 152 (December 2015 - February 2016)
PermalinkDistinctive order based self-similarity descriptor for multi-sensor remote sensing image matching / Amin Sedaghat in ISPRS Journal of photogrammetry and remote sensing, vol 108 (October 2015)
PermalinkMeasuring the effectiveness of various features for thematic information extraction from very high resolution remote sensing imagery / X. Chen in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)
PermalinkSemisupervised transfer component analysis for domain adaptation in remote sensing image classification / Giona Matasci in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
PermalinkVectorisation automatique des forêts dans les minutes de la carte d’état-major du 19e siècle / Pierre-Alexis Herrault in Revue internationale de géomatique, vol 25 n° 1 (mars - mai 2015)
Permalinkvol 25 n° 1 - mars - mai 2015 - Traitement de l'information et prospective (Bulletin de Revue internationale de géomatique) / Françoise Gourmelon
PermalinkIn-flight photogrammetric camera calibration and validation via complementary lidar / A.S. Gneeniss in ISPRS Journal of photogrammetry and remote sensing, vol 100 (February 2015)
PermalinkRadiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction / Daniela Poli in ISPRS Journal of photogrammetry and remote sensing, vol 100 (February 2015)
PermalinkPermalink