Descripteur
Documents disponibles dans cette catégorie (297)



Etendre la recherche sur niveau(x) vers le bas
Sea-land segmentation using deep learning techniques for Landsat-8 OLI imagery / Ting Yang in Marine geodesy, Vol 43 n° 2 (March 2020)
![]()
[article]
Titre : Sea-land segmentation using deep learning techniques for Landsat-8 OLI imagery Type de document : Article/Communication Auteurs : Ting Yang, Auteur ; Zhonghua Hong, Auteur ; Yun Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 105 - 133 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Landsat-OLI
[Termes IGN] littoral
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] trait de côteRésumé : (auteur) Automated coastline extraction from optical satellites is fundamental to coastal mapping, and sea-land segmentation is the core technology of coastline extraction. Deep convolutional neural networks (DCNNs) have performed well in semantic segmentation in recent years. However, sea-land segmentation using deep learning techniques remains a challenging task, due to the lack of a benchmark dataset and the difficulty of deciding which semantic segmentation model to use. We present a comparative framework of sea-land segmentation to Landsat-8 OLI imagery via semantic segmentation in deep learning techniques. Three issues are investigated: (1) constructing a sea-land benchmark dataset using Landsat-8 Operational Land Imager (OLI) imagery consisting of 18,000 km2 of coastline around China; (2) evaluating the feasibility and performance of sea-land segmentation by comparing the accuracy assessment, time complexity, spatial complexity and stability of state-of-the-art DCNNs methods; (3) choosing the most suitable semantic segmentation model for sea-land segmentation in accordance with Akaike information criterion (AIC) and Bayesian information criterion (BIC) model selection. Results show that the average test accuracy achieves over 99% accuracy, and the mean Intersection over Unions (mean IoU) is above 92%. These findings demonstrate that the Fully Convolutional DenseNet (FC-enseNet) performs better than other state-of-the-art methods in sea-land segmentation, based on both AIC and BIC. Considering training time efficiency, DeeplabV3+ performs better for sea-land segmentation. The sea-land segmentation benchmark dataset is available at: https://pan.baidu.com/s/1BlnHiltOLbLKe4TG8lZ5xg. Numéro de notice : A2020-220 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2020.1713266 Date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1080/01490419.2020.1713266 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94917
in Marine geodesy > Vol 43 n° 2 (March 2020) . - pp 105 - 133[article]Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
![]()
[article]
Titre : Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference Type de document : Article/Communication Auteurs : Heidar Rastiveis, Auteur ; Alireza Shams, Auteur ; Wayne A. Sarasua, Auteur ; Jonathan Li, Auteur Année de publication : 2020 Article en page(s) : pp 149 - 166 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] autoroute
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction automatique
[Termes IGN] extraction de points
[Termes IGN] extraction du réseau routier
[Termes IGN] Inférence floue
[Termes IGN] lidar mobile
[Termes IGN] modélisation 3D
[Termes IGN] semis de points
[Termes IGN] transformation de HoughRésumé : (Auteur) Mobile LiDAR systems (MLS) are rapid and accurate technologies for acquiring three-dimensional (3D) point clouds that can be used to generate 3D models of road environments. Because manual extraction of desirable features such as road traffic signs, trees, and pavement markings from these point clouds is tedious and time-consuming, automatic information extraction of these objects is desirable. This paper proposes a novel automatic method to extract pavement lane markings (LMs) using point attributes associated with the MLS point cloud based on fuzzy inference. The proposed method begins with dividing the MLS point cloud into a number of small sections (e.g. tiles) along the route. After initial filtering of non-ground points, each section is vertically aligned. Next, a number of candidate LM areas are detected using a Hough Transform (HT) algorithm and considering a buffer area around each line. The points inside each area are divided into “probable-LM” and “non-LM” clusters. After extracting geometric and radiometric descriptors for the “probable-LM” clusters and analyzing them in a fuzzy inference system, true-LM clusters are eventually detected. Finally, the extracted points are enhanced and transformed back to their original position. The efficiency of the method was tested on two different point cloud datasets along 15.6 km and 9.5 km roadway corridors. Comparing the LMs extracted using the algorithm with the manually extracted LMs, 88% of the LM lines were successfully extracted in both datasets. Numéro de notice : A2020-047 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.009 Date de publication en ligne : 20/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94558
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 149 - 166[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020023 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt
Titre : Multi-scale point cloud analysis Titre original : Analyse multi-échelle de nuage de points Type de document : Thèse/HDR Auteurs : Thibault Lejemble, Auteur ; Loïc Barthe, Directeur de thèse Editeur : Toulouse : Université de Toulouse 3 Paul Sabatier Année de publication : 2020 Importance : 142 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue du Doctorat de l'Université de Toulouse en Informatique et TélécommunicationsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse multiéchelle
[Termes IGN] analyse multirésolution
[Termes IGN] anisotropie
[Termes IGN] approche hiérarchique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction automatique
[Termes IGN] géométrie différentielle
[Termes IGN] graphe
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation en plan
[Termes IGN] segmentation en régions
[Termes IGN] semis de points
[Termes IGN] visualisation 3DIndex. décimale : THESE Thèses et HDR Résumé : (auteur) 3D acquisition techniques like photogrammetry and laser scanning are commonly used in numerous fields such as reverse engineering, archeology, robotics and urban planning. The main objective is to get virtual versions of real objects in order to visualize, analyze and process them easily. Acquisition techniques become more and more powerful and affordable which creates important needs to process efficiently the resulting various and massive3D data. Data are usually obtained in the form of unstructured 3D point cloud sampling the scanned surface. Traditional signal processing methods cannot be directly applied due to the lack of spatial parametrization. Points are only represented by their 3D coordinates without any particular order. This thesis focuses on the notion of scale of analysis defined by the size of the neighborhood used to locally characterize the point-sampled surface. The analysis at different scales enables to consider various shapes which increases the analysis pertinence and the robustness to acquired data imperfections. We first present some theoretical and practical results on curvature estimation adapted to a multi-scale and multi-resolution representation of point clouds. They are used to develop multi-scale algorithms for the recognition of planar and anisotropic shapes such as cylinder sand feature curves. Finally, we propose to compute a global 2D parametrization of the underlying surface directly from the 3D unstructured point cloud. Note de contenu : Introduction
1- Multi-scale differential analysis of point clouds
2- Plane detection using persistence analysis of graph
3- An isotropic features detection using curvature lines
4- Point cloud parametrization
ConclusionNuméro de notice : 28583 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique et Télécommunications : Toulouse 3 : 2020 Organisme de stage : Institut de recherche en informatique de Toulouse En ligne : https://tel.archives-ouvertes.fr/tel-03170824/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97923 An indoor navigation model and its network extraction / Filippo Mortari in Applied geomatics, Vol 11 n° 4 (December 2019)
![]()
[article]
Titre : An indoor navigation model and its network extraction Type de document : Article/Communication Auteurs : Filippo Mortari, Auteur ; Eliseo Clementini, Auteur ; Sisi Zlatanova, Auteur ; Liu Liu, Auteur Année de publication : 2019 Article en page(s) : pp 413–427 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] axe médian
[Termes IGN] CityGML
[Termes IGN] diagramme de Voronoï
[Termes IGN] espace topologique
[Termes IGN] extraction automatique
[Termes IGN] extraction de données
[Termes IGN] modèle géométrique du bâti
[Termes IGN] modèle numérique du bâti
[Termes IGN] modélisation 3D
[Termes IGN] positionnement en intérieur
[Termes IGN] raisonnement spatiotemporel
[Termes IGN] représentation spatio-sémantiqueRésumé : (auteur) We propose a navigation model for indoor environments that combines a 3D geometric modeling of buildings with connection properties of spaces and semantic elements such as openings and installations. The model is an extension of the IndoorGML standard navigation module with a twofold benefit: the extension facilitated the data import from the international standard CityGML and introduced the semantics of various fixtures in indoor space of buildings making the navigation model more suitable for human needs. Several experiments have been conducted by extracting networks from CityGML data and performing a comparison with other network construction techniques. The second contribution of the paper is an algorithm for the automatic extraction of the navigation network. Such an algorithm is a hybrid solution between medial axis approaches and visibility graph approaches. Normally, medial axes approaches are a good representation of human navigation in narrow corridors, especially to avoid obstacles, but introduce distortions in open space. On the other hand, visibility approaches work better in open spaces. In our extraction technique, the resulting network takes advantages of both approaches and better mimics human beings’ navigation in indoor environments. Numéro de notice : A2019-534 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-019-00273-8 Date de publication en ligne : 17/06/2019 En ligne : https://doi.org/10.1007/s12518-019-00273-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94129
in Applied geomatics > Vol 11 n° 4 (December 2019) . - pp 413–427[article]Extracting urban landmarks from geographical datasets using a random forests classifier / Yue Lin in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
![]()
[article]
Titre : Extracting urban landmarks from geographical datasets using a random forests classifier Type de document : Article/Communication Auteurs : Yue Lin, Auteur ; Yuyang Cai, Auteur ; Yue Gong, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 2406 - 2423 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] extraction automatique
[Termes IGN] gestion des itinéraires
[Termes IGN] jeu de données localisées
[Termes IGN] point de repère
[Termes IGN] précision de la classification
[Termes IGN] représentation mentale spatiale
[Termes IGN] saillance
[Termes IGN] Shenzhen
[Termes IGN] villeRésumé : (auteur) Urban landmarks are of significant importance to spatial cognition and route navigation. However, the current landmark extraction methods mainly focus on the visual salience of landmarks and are insufficient for obtaining high extraction accuracy when the size of the geographical dataset varies. This study introduces a random forests (RF) classifier combining with the synthetic minority oversampling technique (SMOTE) in urban landmark extraction. Both GIS and social sensing data are employed to quantify the structural and cognitive salience of the examined urban features, which are available from basic spatial databases or mainstream web service application programming interfaces (APIs). The results show that the SMOTE-RF model performs well in urban landmark extraction, with the values of recall, precision, F-measure and AUC reaching 0.851, 0.831, 0.841 and 0.841, respectively. Additionally, this method is suitable for both large and small geographical datasets. The ranking of variable importance given by this model further indicates that certain cognitive measures – such as feature class, Weibo popularity and Bing popularity – can serve as crucial factors for determining a landmark. The optimal variable combination for landmark extraction is also acquired, which might provide support for eliminating the variable selection requirement in other landmark extraction methods. Numéro de notice : A2019-426 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1620238 Date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1080/13658816.2019.1620238 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93559
in International journal of geographical information science IJGIS > vol 33 n° 12 (December 2019) . - pp 2406 - 2423[article]Mapping urban fingerprints of odonyms automatically extracted from French novels / Ludovic Moncla in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
PermalinkAccurate detection of built-up areas from high-resolution remote sensing imagery using a fully convolutional network / Yihua Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)
PermalinkAutomatic extraction of accurate 3D tie points for trajectory adjustment of mobile laser scanners using aerial imagery / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkBuilding detection and regularisation using DSM and imagery information / Yousif A. Mousa in Photogrammetric record, vol 34 n° 165 (March 2019)
PermalinkLand cover classification in combined elevation and optical images supported by OSM data, mixed-level features, and non-local optimization algorithms / Dimitri Bulatov in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)
PermalinkWebscraping, bigdata et analyse spatiale de données immobilières : réponse à un projet ESPON au sein de l'UMS RIATE / Marc Lieury (2019)
PermalinkFictive motion extraction and classification / Ekaterina Egorova in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)
PermalinkNovel fusion approach on automatic object extraction from spatial data: case study Worldview-2 and TOPO5000 / Umut Gunes Sefercik in Geocarto international, vol 33 n° 10 (October 2018)
PermalinkPedestrian network information extraction based on VGI / Xuejing Xie in Geomatica, vol 72 n° 3 (September 2018)
PermalinkA deep learning approach to DTM extraction from imagery using rule-based training labels / Caroline M. Gevaert in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
Permalink