Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > extraction de traits caractéristiques > extraction du réseau routier
extraction du réseau routierSynonyme(s)détection du réseau routier |



Etendre la recherche sur niveau(x) vers le bas
Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks / Mahmoud Saeedimoghaddam in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
![]()
[article]
Titre : Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks Type de document : Article/Communication Auteurs : Mahmoud Saeedimoghaddam, Auteur ; Tomasz F. Stepinski, Auteur Année de publication : 2020 Article en page(s) : pp 947 - 968 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] carrefour
[Termes descripteurs IGN] carte ancienne
[Termes descripteurs IGN] carte numérisée
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] données localisées
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] numérisation automatique
[Termes descripteurs IGN] représentation cartographique
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] vision par ordinateurRésumé : (auteur) Road intersection data have been used across a range of geospatial analyses. However, many datasets dating from before the advent of GIS are only available as historical printed maps. To be analyzed by GIS software, they need to be scanned and transformed into a usable (vector-based) format. Because the number of scanned historical maps is voluminous, automated methods of digitization and transformation are needed. Frequently, these processes are based on computer vision algorithms. However, the key challenges to this are (1) the low conversion accuracy for low quality and visually complex maps, and (2) the selection of optimal parameters. In this paper, we used a region-based deep convolutional neural network-based framework (RCNN) for object detection, in order to automatically identify road intersections in historical maps of several cities in the United States of America. We found that the RCNN approach is more accurate than traditional computer vision algorithms for double-line cartographic representation of the roads, though its accuracy does not surpass all traditional methods used for single-line symbols. The results suggest that the number of errors in the outputs is sensitive to complexity and blurriness of the maps, and to the number of distinct red-green-blue (RGB) combinations within them. Numéro de notice : A2020-205 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1696968 date de publication en ligne : 28/11/2019 En ligne : https://doi.org/10.1080/13658816.2019.1696968 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94882
in International journal of geographical information science IJGIS > vol 34 n° 5 (May 2020) . - pp 947 - 968[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020051 SL Revue Centre de documentation Revues en salle Disponible Edge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery / Xiaoyan Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
![]()
[article]
Titre : Edge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery Type de document : Article/Communication Auteurs : Xiaoyan Lu, Auteur ; Yanfei Zhong, Auteur ; Zhuo Zheng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 153 - 160 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] accentuation de contours
[Termes descripteurs IGN] analyse multiéchelle
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] ombre
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) Road detection in very-high-resolution remote sensing imagery is a hot research topic. However, the high resolution results in highly complex data distributions, which lead to much noise for road detection—for example, shadows and occlusions caused by disturbance on the roadside make it difficult to accurately recognize road. In this article, a novel edge-reinforced convolutional neural network, combined with multiscale feature extraction and edge reinforcement, is proposed to alleviate this problem. First, multiscale feature extraction is used in the center part of the proposed network to extract multiscale context information. Then edge reinforcement, applying a simplified U-Net to learn additional edge information, is used to restore the road information. The two operations can be used with different convolutional neural networks. Finally, two public road data sets are adopted to verify the effectiveness of the proposed approach, with experimental results demonstrating its superiority. Numéro de notice : A2020-145 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.3.153 date de publication en ligne : 01/03/2020 En ligne : https://doi.org/10.14358/PERS.86.3.153 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94774
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 3 (March 2020) . - pp 153 - 160[article]Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
![]()
[article]
Titre : Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference Type de document : Article/Communication Auteurs : Heidar Rastiveis, Auteur ; Alireza Shams, Auteur ; Wayne A. Sarasua, Auteur ; Jonathan Li, Auteur Année de publication : 2020 Article en page(s) : pp 149 - 166 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] autoroute
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] extraction de points
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] Inférence floue
[Termes descripteurs IGN] lidar mobile
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] transformation de HoughRésumé : (Auteur) Mobile LiDAR systems (MLS) are rapid and accurate technologies for acquiring three-dimensional (3D) point clouds that can be used to generate 3D models of road environments. Because manual extraction of desirable features such as road traffic signs, trees, and pavement markings from these point clouds is tedious and time-consuming, automatic information extraction of these objects is desirable. This paper proposes a novel automatic method to extract pavement lane markings (LMs) using point attributes associated with the MLS point cloud based on fuzzy inference. The proposed method begins with dividing the MLS point cloud into a number of small sections (e.g. tiles) along the route. After initial filtering of non-ground points, each section is vertically aligned. Next, a number of candidate LM areas are detected using a Hough Transform (HT) algorithm and considering a buffer area around each line. The points inside each area are divided into “probable-LM” and “non-LM” clusters. After extracting geometric and radiometric descriptors for the “probable-LM” clusters and analyzing them in a fuzzy inference system, true-LM clusters are eventually detected. Finally, the extracted points are enhanced and transformed back to their original position. The efficiency of the method was tested on two different point cloud datasets along 15.6 km and 9.5 km roadway corridors. Comparing the LMs extracted using the algorithm with the manually extracted LMs, 88% of the LM lines were successfully extracted in both datasets. Numéro de notice : A2020-047 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.009 date de publication en ligne : 20/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94558
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 149 - 166[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 SL Revue Centre de documentation Revues en salle Disponible 081-2020023 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A cognitive framework for road detection from high-resolution satellite images / Naveen Chandra in Geocarto international, vol 34 n° 8 ([15/06/2019])
![]()
[article]
Titre : A cognitive framework for road detection from high-resolution satellite images Type de document : Article/Communication Auteurs : Naveen Chandra, Auteur ; Jayanta Kumar Ghosh, Auteur ; Ashu Sharma, Auteur Année de publication : 2019 Article en page(s) : pp 909 - 924 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] méthode fondée sur le noyau
[Termes descripteurs IGN] représentation cognitive
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Road network extraction from high-resolution satellite (HRS) imagery is a complex task. It is an important field of research and is widely used in various cartographic applications such as updating and generating maps. The objective of this research work is to develop a novel framework, emulating human cognition, for detection of roads from HRS images. Roads network from HRS images are detected using support vector machines within the different stages of cognitive task analysis. In the first stage, basic information about the cognitive parameters which are required for image interpretation is collected. In the second stage, the rule-based method is used for knowledge representation. Lastly, during knowledge elicitation, the developed rules are used to extract roads from HRS images. The proposed method is validated using 16 HRS images of developed suburban, developed urban, emerging suburban and emerging urban region. Numéro de notice : A2019-515 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1450451 date de publication en ligne : 29/03/2018 En ligne : https://doi.org/10.1080/10106049.2018.1450451 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93869
in Geocarto international > vol 34 n° 8 [15/06/2019] . - pp 909 - 924[article]Multilane roads extracted from the OpenStreetMap urban road network using random forests / Yongyang Xu in Transactions in GIS, vol 23 n° 2 (April 2019)
![]()
[article]
Titre : Multilane roads extracted from the OpenStreetMap urban road network using random forests Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Zhong Xie, Auteur ; Liang Wu, Auteur ; Zhanlong Chen, Auteur Année de publication : 2019 Article en page(s) : pp 224 - 240 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] OpenStreetMap
[Termes descripteurs IGN] Pékin (Chine)
[Termes descripteurs IGN] réseau routierRésumé : (Auteur) The volunteered geographic information (VGI) collected in OpenStreetMap (OSM) has been used in many applications. Extracting multilane roads and establishing a high level of expressed detail play important roles in the field of automated cartographic generalization. An accurate and detailed extraction process benefits geographic analysis, urban region division, and road network construction, as well as transportation applications services. The road networks in OSM have a high level of detail and complex structures; however, they also include many duplicate lines, which degrade the efficiency and increase the difficulty of extracting multilane roads. To resolve these problems, this work proposes a machine‐learning‐based approach, in which the road networks are first converted from lines to polygons. Then, various geometric descriptors, including compactness, width, circularity, area, perimeter, complexity, parallelism, shape descriptor, and width‐to‐length ratio, are used to train a random forest (RF) classifier and identify the candidates. Finally, another RF is trained to evaluate the candidates using all the geometric descriptors and topological features; the outputs of this second trained RF are the predicted multilane roads. An experiment using OSM data from Beijing, China validated the proposed method, which achieves a highly effective performance when extracting multilane roads from OSM. Numéro de notice : A2019-250 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12514 date de publication en ligne : 26/12/2018 En ligne : https://doi.org/10.1111/tgis.12514 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93006
in Transactions in GIS > vol 23 n° 2 (April 2019) . - pp 224 - 240[article]Integration of lidar data and GIS data for point cloud semantic enrichment at the point level / Harith Aljumaily in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
PermalinkSimultaneous chain-forming and generalization of road networks / Susanne Wenzel in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
PermalinkRoad safety evaluation through automatic extraction of road horizontal alignments from Mobile LiDAR System and inductive reasoning based on a decision tree / José Antonio Martin-Jimenez in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)
PermalinkNovel fusion approach on automatic object extraction from spatial data: case study Worldview-2 and TOPO5000 / Umut G. Sefercik in Geocarto international, vol 33 n° 10 (October 2018)
PermalinkGenerative street addresses from satellite imagery / İlke Demir in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
Permalink3D local feature BKD to extract road information from mobile laser scanning point clouds / Yang Bisheng in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkSimultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks / Rasha Alshehhi in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkLarge-scale road detection in forested mountainous areas using airborne topographic lidar data / António Ferraz in ISPRS Journal of photogrammetry and remote sensing, vol 112 (February 2016)
PermalinkMulti-criteria, graph-based road centerline vectorization using ordered weighted averaging operators / Fateme Ameri in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 2 (February 2016)
PermalinkRoad vectorisation from high-resolution imagery based on dynamic clustering using particle swarm optimisation / Fateme Ameri in Photogrammetric record, vol 30 n° 152 (December 2015 - February 2016)
Permalink