Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > extraction de traits caractéristiques > extraction du réseau routier
extraction du réseau routierSynonyme(s)détection du réseau routier |
Documents disponibles dans cette catégorie (109)



Etendre la recherche sur niveau(x) vers le bas
Towards the automated large-scale reconstruction of past road networks from historical maps / Johannes H. Uhl in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Towards the automated large-scale reconstruction of past road networks from historical maps Type de document : Article/Communication Auteurs : Johannes H. Uhl, Auteur ; Stefan Leyk, Auteur ; Yao-Yi Chiang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101794 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] analyse de sensibilité
[Termes IGN] carte ancienne
[Termes IGN] carte routière
[Termes IGN] carte topographique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données multitemporelles
[Termes IGN] Etats-Unis
[Termes IGN] extraction du réseau routier
[Termes IGN] histoire
[Termes IGN] paysage
[Termes IGN] réseau routier
[Termes IGN] transport routier
[Termes IGN] urbanisationRésumé : (auteur) Transportation infrastructure, such as road or railroad networks, represent a fundamental component of our civilization. For sustainable planning and informed decision making, a thorough understanding of the long-term evolution of transportation infrastructure such as road networks is crucial. However, spatially explicit, multi-temporal road network data covering large spatial extents are scarce and rarely available prior to the 2000s. Herein, we propose a framework that employs increasingly available scanned and georeferenced historical map series to reconstruct past road networks, by integrating abundant, contemporary road network data and color information extracted from historical maps. Specifically, our method uses contemporary road segments as analytical units and extracts historical roads by inferring their existence in historical map series based on image processing and clustering techniques. We tested our method on over 300,000 road segments representing more than 50,000 km of the road network in the United States, extending across three study areas that cover 42 historical topographic map sheets dated between 1890 and 1950. We evaluated our approach by comparison to other historical datasets and against manually created reference data, achieving F-1 scores of up to 0.95, and showed that the extracted road network statistics are highly plausible over time, i.e., following general growth patterns. We demonstrated that contemporary geospatial data integrated with information extracted from historical map series open up new avenues for the quantitative analysis of long-term urbanization processes and landscape changes far beyond the era of operational remote sensing and digital cartography. Numéro de notice : A2022-243 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101794 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100182
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101794[article]An informal road detection neural network for societal impact in developing countries / Inger Fabris-Rotelli in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)
![]()
[article]
Titre : An informal road detection neural network for societal impact in developing countries Type de document : Article/Communication Auteurs : Inger Fabris-Rotelli, Auteur ; Abraham Wannenburg, Auteur ; Gao Maribe, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 267 - 274 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] Afrique du sud (état)
[Termes IGN] apprentissage profond
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] extraction du réseau routier
[Termes IGN] image satellite
[Termes IGN] impact social
[Termes IGN] pays en développement
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Roads found in informal settlements arise out of convenience, and are often not recorded or maintained by authorities. This complicates service delivery, sustainable development and crisis mitigation, including management and tracking of COVID-19. We, therefore, aim to extract informal roads in remote sensing images. Existing techniques aiming at the extraction of formal roads are not suitable for the problem due to the complex physical and spectral properties of informal roads. The only existing approaches for informal roads, namely (Nobrega et al., 2006, Thiede et al., 2020), do not consider neural networks as a solution. Neural networks show promise in overcoming these complexities. However, they require a large amount of data to learn, which is currently not available due to the expensive and time-consuming nature of collecting such data. This paper implements a neural network to extract informal roads from a data set digitised by this research group. Data quality is assessed by calculating validity completeness, homogeneity and the V-measure, a measure of consistency, in order to evaluate the overall usability of the dataset for neural network informal road detection. We implement the GANs-UNet model that obtained the highest F1-score in a 2020 review paper (Abdollahi et al., 2020) on the state-of-the-art deep learning models used to extract formal roads. The results indicate that the model is able to extract informal roads successfully in the presence of appropriate training data. Numéro de notice : A2022-424 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-4-2022-267-2022 Date de publication en ligne : 18/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-4-2022-267-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100729
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-4-2022 (2022 edition) . - pp 267 - 274[article]Application oriented quality evaluation of Gaofen-7 optical stereo satellite imagery / Jiaojiao Tian in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2022 (2022 edition)
![]()
[article]
Titre : Application oriented quality evaluation of Gaofen-7 optical stereo satellite imagery Type de document : Article/Communication Auteurs : Jiaojiao Tian, Auteur ; Xiangyu Zhuo, Auteur ; Xiangtian Yuan, Auteur ; Corentin Henry, Auteur ; Pablo d' Angelo, Auteur ; Thomas Krauss, Auteur Année de publication : 2022 Article en page(s) : pp 145 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Allemagne
[Termes IGN] détection du bâti
[Termes IGN] extraction du réseau routier
[Termes IGN] image Gaofen
[Termes IGN] image optique
[Termes IGN] orientation d'image
[Termes IGN] reconstruction 3D
[Termes IGN] scène urbaine
[Termes IGN] segmentationRésumé : (auteur) GaoFen-7 (GF-7) satellite mission is further expanding the very high resolution 3D mapping application. Carrying the first civilian Chinese sub-meter resolution stereo satellite sensors, GF-7 satellite was launched on November 7, 2019. With 0.65 meter resolution on backward view and 0.8 meter resolution forward view, GF-7 has been designed to meet the demand of natural resource monitoring, land surveying, and other mapping applications in China. The use of GF-7 for 3D city reconstruction is unfortunately restricted by the fixed large stereo view angle of forward and backward cameras with +26 and −5 degrees respectively which is not optimal for dense stereo matching in urban regions. In this paper, we intensively evaluate the quality of the GF-7 datasets by performing a series of urban monitoring applications, including road detection, building extraction and 3D reconstruction. In addition, we propose a 3D reconstruction workflow which uses the land cover classification result to refine the stereo matching result. Six sub-urban regions are selected from the available datasets in the middle of Germany. The results show that basic elements in urban scenes like buildings and roads could be detected from GF-7 datasets with high accuracy. With the proposed workflow, a 3D city model with a visually observed good quality can be delivered. Numéro de notice : A2022-442 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-1-2022-145-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-1-2022-145-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100776
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-1-2022 (2022 edition) . - pp 145 - 152[article]Human cognition based framework for detecting roads from remote sensing images / Naveen Chandra in Geocarto international, vol 37 n° 8 ([01/05/2022])
![]()
[article]
Titre : Human cognition based framework for detecting roads from remote sensing images Type de document : Article/Communication Auteurs : Naveen Chandra, Auteur ; Himadri Vaidya, Auteur ; Jayanta Kumar Ghosh, Auteur Année de publication : 2022 Article en page(s) : pp 2365 - 2384 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image numérique
[Termes IGN] classification
[Termes IGN] cognition
[Termes IGN] extraction du réseau routier
[Termes IGN] image à haute résolution
[Termes IGN] interprétation (psychologie)
[Termes IGN] représentation cognitive
[Termes IGN] segmentation d'imageRésumé : (auteur) The complete extraction of roads from remote sensing images (RSIs) is an emergent area of research. It is an interesting topic as it involves diverse procedures for detecting roads. The detection of roads using high-resolution-satellite-images (HRSi) is challenging because of the occurrence of several types of noise such as bridges, vehicles, and crossing lines, etc. The extraction of the correct road network is crucial due to its broad range of applications such as transportation, map updating, navigation, and generating maps. Therefore our paper concentrates on understanding the cognitive processes, reasoning, and knowledge used by the analyst through visual cognition while performing the task of road detection from HRSi. The novel process is performed emulating human cognition within cognitive task analysis which is carried out in five different stages. The suggested cognitive procedure for road extraction is validated with the fifteen HRSi of four different land cover patterns specifically developed-sub-urban (DSUr), developed-urban (DUr), emerging-sub-urban (ESUr), and emerging-urban (EUr). The experimental results and the comparative assessment prove the impact of the presented cognitive method. Numéro de notice : A2022-506 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1810330 Date de publication en ligne : 14/10/2020 En ligne : https://doi.org/10.1080/10106049.2020.1810330 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101027
in Geocarto international > vol 37 n° 8 [01/05/2022] . - pp 2365 - 2384[article]A combination of convolutional and graph neural networks for regularized road surface extraction / Jingjing Yan in IEEE Transactions on geoscience and remote sensing, vol 60 n° 2 (February 2022)
![]()
[article]
Titre : A combination of convolutional and graph neural networks for regularized road surface extraction Type de document : Article/Communication Auteurs : Jingjing Yan, Auteur ; Shunping Ji, Auteur ; Yao Wei, Auteur Année de publication : 2022 Article en page(s) : n° 4409113 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Bavière (Allemagne)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] image aérienne
[Termes IGN] jeu de données
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régression
[Termes IGN] réseau neuronal de graphes
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Road surface extraction from high-resolution remote sensing images has many engineering applications; however, extracting regularized and smooth road surface maps that reach the human delineation level is a very challenging task, and substantial and time-consuming manual work is usually unavoidable. In this article, to solve this problem, we propose a novel regularized road surface extraction framework by introducing a graph neural network (GNN) for processing the road graph that is preconstructed from the easily accessible road centerlines. The proposed framework formulates the road surface extraction problem as two-sided width inference of the road graph and consists of a convolutional neural network (CNN)-based feature extractor and a GNN model for vertex attribute adjustment. The CNN extracts the high-level abstract features of each vertex in the graph as the input of the GNN and also the road boundary features that allow us to distinguish roads from the background. The GNN propagates and aggregates the features of the vertices in the graph to achieve global optimization of the regression of the regularized widths of the vertices. At the same time, a biased centerline map can also be corrected based on the width prediction result. To the best of the authors’ knowledge, this is the first study to have introduced a GNN to regularized human-level road surface extraction. The proposed method was evaluated on four diverse datasets, and the results show that the proposed method comprehensively outperforms the recent CNN-based segmentation methods and other regularization methods in the intersection over union (IoU) and smoothness score, and a visual check shows that a majority of the prediction results of the proposed method approach the human delineation level. Numéro de notice : A2022-297 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3151688 Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3151688 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100355
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 2 (February 2022) . - n° 4409113[article]Efficient occluded road extraction from high-resolution remote sensing imagery / Dejun Feng in Remote sensing, vol 13 n° 24 (December-2 2021)
PermalinkDiResNet: Direction-aware residual network for road extraction in VHR remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
PermalinkDouble adaptive intensity-threshold method for uneven Lidar data to extract road markings / Chengming Ye in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
PermalinkLearning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery / Ju Zhang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkAutomatic object extraction from airborne laser scanning point clouds for digital base map production / Elyta Widyaningrum (2021)
PermalinkContributions to graph-based hierarchical analysis for images and 3D point clouds / Leonardo Gigli (2021)
PermalinkFuNet: A novel road extraction network with fusion of location data and remote sensing imagery / Kai Zhou in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
PermalinkAutomatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks / Mahmoud Saeedimoghaddam in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
PermalinkEdge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery / Xiaoyan Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkAutomated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
Permalink