Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > phytobiologie > feuille (végétation)
feuille (végétation) |
Documents disponibles dans cette catégorie (65)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Discriminating pure Tamarix species and their putative hybrids using field spectrometer / Solomon G. Tesfamichael in Geocarto international, vol 37 n° 25 ([01/12/2022])
[article]
Titre : Discriminating pure Tamarix species and their putative hybrids using field spectrometer Type de document : Article/Communication Auteurs : Solomon G. Tesfamichael, Auteur ; Solomon W. Newete, Auteur ; Elhadi Adam, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7733 - 7752 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique du sud (état)
[Termes IGN] apprentissage automatique
[Termes IGN] canopée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] espèce exotique envahissante
[Termes IGN] essence indigène
[Termes IGN] Extreme Gradient Machine
[Termes IGN] feuille (végétation)
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image Worldview
[Termes IGN] spectroradiomètre
[Termes IGN] Tamarix (genre)Résumé : (auteur) South Africa is home to a native Tamarix species, while two were introduced in the early 1900s to mitigate the effects of mining on soil. The introduced species have spread to other ecosystems resulting in ecological deteriorations. The problem is compounded by hybridization of the species making identification between the native and exotic species difficult. This study investigated the potential of remote sensing in identifying native, non-native and hybrid Tamarix species recorded in South Africa. Leaf- and canopy-level classifications of the species were conducted using field spectroradiometer data that provided two inputs: original hyperspectral data and bands simulated according to Landsat-8, Sentinel-2, SPOT-6 and WorldView-3. The original hyperspectral data yielded high accuracies for leaf- and plot-level discriminations (>90%), while promising accuracies were also obtained using Landsat-8, Sentinel-2 and Worldview-3 simulations (>75%). These findings encourage for investigating the performance of actual space-borne multispectral data in classifying the species. Numéro de notice : A2022-928 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1983033 Date de publication en ligne : 27/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1983033 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102661
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7733 - 7752[article]An advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations / Kai Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)
[article]
Titre : An advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations Type de document : Article/Communication Auteurs : Kai Zhou, Auteur ; Lin Cao, Auteur ; Shiyun Yin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande spectrale
[Termes IGN] coefficient de corrélation
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] feuille (végétation)
[Termes IGN] Ginkgo biloba
[Termes IGN] image à haute résolution
[Termes IGN] indice foliaire
[Termes IGN] Kiangsou (Chine)
[Termes IGN] réflectance végétaleRésumé : (auteur) As a key phenolic pigment concentrated in the surface tissues of leaves, flavonoids (Flav) are the major bioactive ingredients in Ginkgo leaf extracts. Flav are also marked natural antioxidants and significant indicators of biotic and abiotic stresses, critical for determining cultivation quality and enhancing Flav yield. In particular, area-based Flav (Flavarea) is related to the shortwave-blue light interaction within leaves per unit leaf area, whereas mass-based Flav (Flavmass) is useful for the quantitative assessment of Flav yield. In order to accurately estimate the contents of Flavarea and Flavmass in leaves of Ginkgo plantations, in this study, we developed an advanced bidirectional reflectance factor (BRF) spectra-based approach by reducing the effects of specular reflection and enhancing the absorption signals of Flav (in the shortwave-blue region of spectrum), using a suite of new spectral indices (SIs) (i.e., flavonoid index (FI), modified flavonoid index (mFI) and double difference index (DD)) calculated from the leaf clip equipped spectrometers-collected data. The results demonstrated that most of the SIs derived from the developed BRF spectra-based approach obtained relatively high performance for Flav estimation by alleviating adverse effects of specular reflection to different extents (CV-R2 = 0.60–0.76). In specific, DDnir434,421 selected from DD-type indices performed (CV-R2 = 0.76 for Flavarea; CV-R2 = 0.69 for Flavmass) better than other indices. These findings represent marked potentials of the developed BRF spectra-based approach for non-destructively estimating leaf Flav content, as well as improving the understanding of the mechanisms of specular effects on Flav estimations in leaves of Ginkgo plantations. Numéro de notice : A2022-744 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.020 Date de publication en ligne : 09/09/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101727
in ISPRS Journal of photogrammetry and remote sensing > vol 193 (November 2022) . - pp 1 - 16[article]Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds / Zhilin Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)
[article]
Titre : Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds Type de document : Article/Communication Auteurs : Zhilin Tian, Auteur ; Shihua Li, Auteur Année de publication : 2022 Article en page(s) : n° 5705111 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bois
[Termes IGN] branche (arbre)
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] données lidar
[Termes IGN] échantillonnage de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] feuille (végétation)
[Termes IGN] graphe
[Termes IGN] Python (langage de programmation)
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Terrestrial light detection and ranging (lidar) is capable of resolving trees at the branch/leaf level with accurate and dense point clouds. The separation of leaf and wood components is a prerequisite for the estimation of branch/leaf-scale biophysical properties and realistic tree model reconstruction. Most existing methods have been tested on trees with similar structures; their robustness for trees of different species and sizes remains relatively unexplored. This study proposed a new graph-based leaf–wood separation (GBS) method for individual trees purely using the xyz -information of the point cloud. The GBS method fully utilized the shortest path-based features, as the shortest path can effectively reflect the structures for trees of different species and sizes. Ten types of tree data—covering tropical, temperate, and boreal species—with heights ranging from 5.4 to 43.7 m, were used to test the method performance. The mean accuracy and kappa coefficient at the point level were 94% and 0.78, respectively, and our method outperformed two other state-of-the-art methods. Through further analysis and testing, the GBS method exhibited a strong ability for detecting small and leaf-surrounded branches, and was also sufficiently robust in terms of data subsampling. Our research further demonstrated the potential of the shortest path-based features in leaf–wood separation. The entire framework was provided for use as an open-source Python package, along with our labeled validation data. Numéro de notice : A2022-853 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3218603 Date de publication en ligne : 01/11/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3218603 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102099
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 11 (November 2022) . - n° 5705111[article]Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands / Niwen Li in Ecological indicators, vol 142 (September 2022)
[article]
Titre : Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands Type de document : Article/Communication Auteurs : Niwen Li, Auteur ; Langning Huo, Auteur ; Xiaoli Zhang, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aiguille
[Termes IGN] analyse discriminante
[Termes IGN] image hyperspectrale
[Termes IGN] Pinus densiflora
[Termes IGN] Pinus koraiensis
[Termes IGN] santé des forêts
[Termes IGN] signature spectrale
[Termes IGN] surveillance forestièreMots-clés libres : competitive adaptive reweighted sampling = échantillonnage compétitif adaptatif pondéré Résumé : (auteur) Pine wilt disease (PWD) is a very destructive forest disease that causes the mortality of pine. The infected trees usually die within three months, and the disease spreads fast with the long-horned beetle as the medium if the infected trees are not removed from the forest in time. Therefore, detecting the infected trees at different infection stage, especially the early infection, is crucial for preventing PWD spread. This study aims to exhibit the spectral differences of the pine needles between healthy pines and infected pines at different infection stages and reveal the diagnostic spectral bands for classifying the different infected stage trees. We collected needle samples from healthy, early-, middle-, late-stage infected trees in a Japanese pine (Pinus densiflora) forest and a Korean pine (Pinus koraiensis) forest in northern China to explore the spectral and biochemical properties differences of these four classes, and selected the sensitive bands combining competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA). The selected bands were used for the four infection stages classification by linear discriminant analysis (LDA) algorithm. The results show that Chlorophyll a, chlorophyll b, carotenoids, and moisture content decreases with the aggravation of infection. The green (510–530 nm), red-edge (680–760 nm), and short-wave infrared (1400–1420 nm and 1925–1965 nm) bands are the sensitive bands, and the overall accuracy is 77 % and 78 % for the Japanese pine and Korean pine respectively when using these bands for classifying healthy, early-, middle-, late-stage infected trees. The results demonstrate that physiological parameters including Chlorophyll a, chlorophyll b, carotenoids, and moisture content can be used as the diagnostic parameters of PWD, and the selected sensitive spectral bands are feasible for detecting the stress symptoms of the Japanese pine and Korean pine. Numéro de notice : A2022-617 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ecolind.2022.109198 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.109198 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101374
in Ecological indicators > vol 142 (September 2022)[article]A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance / Shuo Shi in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
[article]
Titre : A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Lu Xu, Auteur ; Wei Gong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chlorophylle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écosystème forestier
[Termes IGN] feuille (végétation)
[Termes IGN] modèle de transfert radiatif
[Termes IGN] processus gaussien
[Termes IGN] réflectance spectrale
[Termes IGN] régressionRésumé : (auteur) Forest leaf chlorophyll (Cab) and carotenoid (Cxc) are key functional indicators for the state of the forest ecosystem. Current machine learning models based on hyperspectral reflectance are widely applied to estimate leaf Cab and Cxc contents at leaf scale. However, these models have certain accuracy for non-independent datasets but have poor generalization for independent datasets when they are used to estimate leaf Cab and Cxc contents. This fact limits that hyperspectral remote sensing completely replaces destructive measurements for leaf Cab and Cxc contents. Thus, the development of an estimation model with high accuracy and satisfactory generalization is necessary. Convolutional neural networks (CNNs) have certain accuracy and generalization in many domains, and have the potential to solve above-mentioned problem. Therefore, this study developed a CNN using one-dimensional hyperspectral reflectance, which aimed to improve the model's accuracy and generalization in leaf Cab and Cxc content estimation at leaf scale. The proposed CNN was developed by three steps. First, in consideration of the correlation between leaf Cab and Cxc contents in natural leaves, 2500 physical data with leaf reflectance and corresponding Cab and Cxc contents were generated by leaf radiative transfer model and multivariable gaussian distribution function. Then, the proposed CNN was built by five strategies based on the architecture of the AlexNet. Finally, five-fold cross validation was performed with 70% of the physical data to determine the best strategy to develop the proposed CNN. These were executed to ensure the proposed CNN with the maximum accuracy and generalization. In addition, the accuracy and generalization of the proposed CNN were tested using a non-independent dataset and an independent dataset, respectively. The proposed CNN was also compared with back propagation neural network (BPNN), support vector regression (SVR) and gaussian process regression (GPR). Results showed that the best CNN could be developed with one input, five convolutional, three max-pooling and three fully-connected layers. Comprehensively considering the model's accuracy and generalization, the proposed CNN was the best model for leaf Cab and Cxc content estimation compared with BPNN, SVR and GPR. This study provides a development strategy of CNN estimation model using one-dimensional hyperspectral reflectance at leaf scale. The proposed CNN could further promote the practical application of hyperspectral remote sensing in leaf Cab and Cxc content estimation. Numéro de notice : A2022-231 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102719 Date de publication en ligne : 16/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100119
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102719[article]Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies / Guangqin Song in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)PermalinkUncertainties in measurements of leaf optical properties are small compared to the biological variation within and between individuals of European beech / Fanny Petibon in Remote sensing of environment, vol 264 (October 2021)PermalinkLeaf and wood separation for individual trees using the intensity and density data of terrestrial laser scanners / Kai Tan in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)PermalinkEvaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities / Jingjing Zhou in Remote sensing, vol 13 n° 11 (June-1 2021)PermalinkSearch for top‐down and bottom‐up drivers of latitudinal trends in insect herbivory in oak trees in Europe / Elena Valdés-Correcher in Global ecology and biogeography, vol 30 n° 3 (March 2021)PermalinkMonitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)PermalinkA machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements / Bikram Koirala in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)PermalinkYear-to-year crown condition poorly contributes to ring width variations of beech trees in French ICP level I network / Clara Tallieu in Forest ecology and management, Vol 465 (1st June 2020)PermalinkImproved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests / Sruthi M. Krishna Moorthy in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)PermalinkVariation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest / Jing Liu in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)Permalink