Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > phytobiologie > feuille (végétation)
feuille (végétation) |
Documents disponibles dans cette catégorie (60)



Etendre la recherche sur niveau(x) vers le bas
A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance / Shuo Shi in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
![]()
[article]
Titre : A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Lu Xu, Auteur ; Wei Gong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chlorophylle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écosystème forestier
[Termes IGN] feuille (végétation)
[Termes IGN] modèle de transfert radiatif
[Termes IGN] processus gaussien
[Termes IGN] réflectance spectrale
[Termes IGN] régressionRésumé : (auteur) Forest leaf chlorophyll (Cab) and carotenoid (Cxc) are key functional indicators for the state of the forest ecosystem. Current machine learning models based on hyperspectral reflectance are widely applied to estimate leaf Cab and Cxc contents at leaf scale. However, these models have certain accuracy for non-independent datasets but have poor generalization for independent datasets when they are used to estimate leaf Cab and Cxc contents. This fact limits that hyperspectral remote sensing completely replaces destructive measurements for leaf Cab and Cxc contents. Thus, the development of an estimation model with high accuracy and satisfactory generalization is necessary. Convolutional neural networks (CNNs) have certain accuracy and generalization in many domains, and have the potential to solve above-mentioned problem. Therefore, this study developed a CNN using one-dimensional hyperspectral reflectance, which aimed to improve the model's accuracy and generalization in leaf Cab and Cxc content estimation at leaf scale. The proposed CNN was developed by three steps. First, in consideration of the correlation between leaf Cab and Cxc contents in natural leaves, 2500 physical data with leaf reflectance and corresponding Cab and Cxc contents were generated by leaf radiative transfer model and multivariable gaussian distribution function. Then, the proposed CNN was built by five strategies based on the architecture of the AlexNet. Finally, five-fold cross validation was performed with 70% of the physical data to determine the best strategy to develop the proposed CNN. These were executed to ensure the proposed CNN with the maximum accuracy and generalization. In addition, the accuracy and generalization of the proposed CNN were tested using a non-independent dataset and an independent dataset, respectively. The proposed CNN was also compared with back propagation neural network (BPNN), support vector regression (SVR) and gaussian process regression (GPR). Results showed that the best CNN could be developed with one input, five convolutional, three max-pooling and three fully-connected layers. Comprehensively considering the model's accuracy and generalization, the proposed CNN was the best model for leaf Cab and Cxc content estimation compared with BPNN, SVR and GPR. This study provides a development strategy of CNN estimation model using one-dimensional hyperspectral reflectance at leaf scale. The proposed CNN could further promote the practical application of hyperspectral remote sensing in leaf Cab and Cxc content estimation. Numéro de notice : A2022-231 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102719 Date de publication en ligne : 16/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100119
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102719[article]Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies / Guangqin Song in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
![]()
[article]
Titre : Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies Type de document : Article/Communication Auteurs : Guangqin Song, Auteur ; Shengbiao Wu, Auteur ; Calvin K.F. Lee, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 19 - 33 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme SLIC
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] classification dirigée
[Termes IGN] diagnostic foliaire
[Termes IGN] Enhanced vegetation index
[Termes IGN] feuille (végétation)
[Termes IGN] forêt tropicale
[Termes IGN] Panama
[Termes IGN] phénologie
[Termes IGN] photosynthèse
[Termes IGN] segmentation sémantique
[Termes IGN] série temporelle
[Termes IGN] superpixel
[Termes IGN] variation saisonnièreRésumé : (auteur) Tropical leaf phenology—particularly its variability at the tree-crown scale—dominates the seasonality of carbon and water fluxes. However, given enormous species diversity, accurate means of monitoring leaf phenology in tropical forests is still lacking. Time series of the Green Chromatic Coordinate (GCC) metric derived from tower-based red–greenblue (RGB) phenocams have been widely used to monitor leaf phenology in temperate forests, but its application in the tropics remains problematic. To improve monitoring of tropical phenology, we explored the use of a deep learning model (i.e. superpixel-based Residual Networks 50, SP-ResNet50) to automatically differentiate leaves from non-leaves in phenocam images and to derive leaf fraction at the tree-crown scale. To evaluate our model, we used a year of data from six phenocams in two contrasting forests in Panama. We first built a comprehensive library of leaf and non-leaf pixels across various acquisition times, exposure conditions and specific phenocams. We then divided this library into training and testing components. We evaluated the model at three levels: 1) superpixel level with a testing set, 2) crown level by comparing the model-derived leaf fractions with those derived using image-specific supervised classification, and 3) temporally using all daily images to assess the diurnal stability of the model-derived leaf fraction. Finally, we compared the model-derived leaf fraction phenology with leaf phenology derived from GCC. Our results show that: 1) the SP-ResNet50 model accurately differentiates leaves from non-leaves (overall accuracy of 93%) and is robust across all three levels of evaluations; 2) the model accurately quantifies leaf fraction phenology across tree-crowns and forest ecosystems; and 3) the combined use of leaf fraction and GCC helps infer the timing of leaf emergence, maturation and senescence, critical information for modeling photosynthetic seasonality of tropical forests. Collectively, this study offers an improved means for automated tropical phenology monitoring using phenocams. Numéro de notice : A2022-009 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.10.023 Date de publication en ligne : 10/11/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.10.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99057
in ISPRS Journal of photogrammetry and remote sensing > vol 183 (January 2022) . - pp 19 - 33[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022011 SL Revue Centre de documentation Revues en salle Disponible 081-2022013 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Uncertainties in measurements of leaf optical properties are small compared to the biological variation within and between individuals of European beech / Fanny Petibon in Remote sensing of environment, vol 264 (October 2021)
![]()
[article]
Titre : Uncertainties in measurements of leaf optical properties are small compared to the biological variation within and between individuals of European beech Type de document : Article/Communication Auteurs : Fanny Petibon, Auteur ; Ewa A. Czyż, Auteur ; Giulia Ghielmetti, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112601 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] anisotropie
[Termes IGN] diagnostic foliaire
[Termes IGN] échantillonnage
[Termes IGN] Fagus sylvatica
[Termes IGN] feuille (végétation)
[Termes IGN] France (administrative)
[Termes IGN] incertitude spectrale
[Termes IGN] indicateur biologique
[Termes IGN] phénologie
[Termes IGN] réflectance spectrale
[Termes IGN] réflectance végétale
[Termes IGN] saison
[Termes IGN] spectroradiomètre
[Termes IGN] SuisseRésumé : (auteur) The measurement of leaf optical properties (LOP) using reflectance and scattering properties of light allows a continuous, time-resolved, and rapid characterization of many species traits including water status, chemical composition, and leaf structure. Variation in trait values expressed by individuals result from a combination of biological and environmental variations. Such species trait variations are increasingly recognized as drivers and responses of biodiversity and ecosystem properties. However, little has been done to comprehensively characterize or monitor such variation using leaf reflectance, where emphasis is more often on species average values. Furthermore, although a variety of platforms and protocols exist for the estimation of leaf reflectance, there is neither a standard method, nor a best practise of treating measurement uncertainty which has yet been collectively adopted. In this study, we investigate what level of uncertainty can be accepted when measuring leaf reflectance while ensuring the detection of species trait variation at several levels: within individuals, over time, between individuals, and between populations. As a study species, we use an economically and ecologically important dominant European tree species, namely Fagus sylvatica. We first use fabrics as standard material to quantify measurement uncertainties associated with leaf clip (0.0001 to 0.4 reflectance units) and integrating sphere measurements (0.0001 to 0.01 reflectance units) via error propagation. We then quantify spectrally resolved variation in reflectance from F. sylvatica leaves. We show that the measurement uncertainty associated with leaf reflectance, estimated using a field spectroradiometer with attached leaf clip, represents on average a small portion of the spectral variation within a single individual sampled over one growing season (2.7 ± 1.7%), or between individuals sampled over one week (1.5 ± 1.3% or 3.4 ± 1.7%, respectively) in a set of monitored F. sylvatica trees located in Swiss and French forests. In all forests, the spectral variation between individuals exceeded the spectral variation of a single individual at the time of the measurement. However, measurements of variation within individuals at different canopy positions over time indicate that sampling design (e.g., standardized sampling, and sample size) strongly impacts our ability to measure between-individual variation. We suggest best practice approaches toward a standardized protocol to allow for rigorous quantification of species trait variation using leaf reflectance. Numéro de notice : A2021-808 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112601 Date de publication en ligne : 29/07/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112601 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98868
in Remote sensing of environment > vol 264 (October 2021) . - n° 112601[article]Leaf and wood separation for individual trees using the intensity and density data of terrestrial laser scanners / Kai Tan in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)
![]()
[article]
Titre : Leaf and wood separation for individual trees using the intensity and density data of terrestrial laser scanners Type de document : Article/Communication Auteurs : Kai Tan, Auteur ; Weiguo Zhang, Auteur ; Zhen Dong, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 7038 - 7050 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] bois
[Termes IGN] densité du feuillage
[Termes IGN] données lidar
[Termes IGN] données TLS (télémétrie)
[Termes IGN] feuille (végétation)
[Termes IGN] réflectance spectrale
[Termes IGN] semis de pointsRésumé : (auteur) Terrestrial laser scanning (TLS) is a highly effective and noninvasive technology for retrieving the structural and biophysical attributes of trees using 3-D high-accuracy and high-density point clouds. The separation of leaf and wood points in TLS data is a prerequisite for the accurate and reliable derivation of these attributes. In this study, a new method is proposed to separate the leaf and wood points of individual trees by combining the TLS radiometric (intensity) and geometric (density) data. The leaf points are separated from the wood ones through three steps. First, the corrected intensity data are used to separate a part of the leaf points preliminarily given the differences in reflectance characteristics. Second, the density data are adopted for the further separation of another part of the leaf points because the density of the remaining leaf points is smaller than that of the wood points. Finally, a connectivity clustering algorithm is conducted to form several clusters with different sizes (points) and the remaining leaf points are separated in accordance with the cluster sizes. Eight different trees are selected to evaluate the performance of the proposed method. The averaged overall accuracy and kappa coefficient of the eight trees are approximately 95% and 0.81, respectively. The results suggest that the combination of TLS intensity and density data can perform a superior separation of leaf and wood points in terms of efficiency and accuracy, and the proposed separation method can be accurately and robustly used for various trees with different species, sizes, and structures. Numéro de notice : A2021-633 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3032167 Date de publication en ligne : 30/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3032167 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98295
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 8 (August 2021) . - pp 7038 - 7050[article]Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities / Jingjing Zhou in Remote sensing, vol 13 n° 11 (June-1 2021)
![]()
[article]
Titre : Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities Type de document : Article/Communication Auteurs : Jingjing Zhou, Auteur ; Ya-Hao Zhang, Auteur ; Ze-Min Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2160 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] Citrus (genre)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] feuille (végétation)
[Termes IGN] image hyperspectrale
[Termes IGN] photosynthèse
[Termes IGN] réflectance végétale
[Termes IGN] rendement agricole
[Termes IGN] stress hydrique
[Termes IGN] surveillance de la végétationRésumé : (auteur) Advanced techniques capable of early, rapid, and nondestructive detection of the impacts of drought on fruit tree and the measurement of the underlying photosynthetic traits on a large scale are necessary to meet the challenges of precision farming and full prediction of yield increases. We tested the application of hyperspectral reflectance as a high-throughput phenotyping approach for early identification of water stress and rapid assessment of leaf photosynthetic traits in citrus trees by conducting a greenhouse experiment. To this end, photosynthetic CO2 assimilation rate (Pn), stomatal conductance (Cond) and transpiration rate (Trmmol) were measured with gas-exchange approaches alongside measurements of leaf hyperspectral reflectance from citrus grown across a gradient of soil drought levels six times, during 20 days of stress induction and 13 days of rewatering. Water stress caused Pn, Cond, and Trmmol rapid and continuous decline throughout the entire drought period. The upper layer was more sensitive to drought than middle and lower layers. Water stress could also bring continuous and dynamic changes of the mean spectral reflectance and absorptance over time. After trees were rewatered, these differences were not obvious. The original reflectance spectra of the four water stresses were surprisingly of low diversity and could not track drought responses, whereas specific hyperspectral spectral vegetation indices (SVIs) and absorption features or wavelength position variables presented great potential. The following machine-learning algorithms: random forest (RF), support vector machine (SVM), gradient boost (GDboost), and adaptive boosting (Adaboost) were used to develop a measure of photosynthesis from leaf reflectance spectra. The performance of four machine-learning algorithms were assessed, and RF algorithm yielded the highest predictive power for predicting photosynthetic parameters (R2 was 0.92, 0.89, and 0.88 for Pn, Cond, and Trmmol, respectively). Our results indicated that leaf hyperspectral reflectance is a reliable and stable method for monitoring water stress and yield increase, with great potential to be applied in large-scale orchards. Numéro de notice : A2021-440 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13112160 Date de publication en ligne : 31/05/2021 En ligne : https://doi.org/10.3390/rs13112160 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97826
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2160[article]Search for top‐down and bottom‐up drivers of latitudinal trends in insect herbivory in oak trees in Europe / Elena Valdés-Correcher in Global ecology and biogeography, vol 30 n° 3 (March 2021)
PermalinkMonitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkA machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements / Bikram Koirala in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkYear-to-year crown condition poorly contributes to ring width variations of beech trees in French ICP level I network / Clara Tallieu in Forest ecology and management, Vol 465 (1st June 2020)
PermalinkImproved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests / Sruthi M. Krishna Moorthy in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkVariation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest / Jing Liu in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
PermalinkExploitation of hyperspectral data for assessing vegetation health under exposure to petroleum hydrocarbons / Guillaume Lassalle (2019)
PermalinkAnalyzing the vertical distribution of crown material in mixed stand composed of two temperate tree species / Olivier Martin-Ducup in Forests, vol 9 n° 11 (November 2018)
PermalinkEstimating the leaf area of an individual tree in urban areas using terrestrial laser scanner and path length distribution model / Ronghai Hu in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
PermalinkResearch on the estimation model of vegetation water content in halophyte leaves based on the newly developed vegetation indices / Zhe Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 9 (September 2018)
Permalink