Descripteur



Etendre la recherche sur niveau(x) vers le bas
Search for top‐down and bottom‐up drivers of latitudinal trends in insect herbivory in oak trees in Europe / Elena Valdés-Correcher in Global ecology and biogeography, vol 30 n° inconnu (2021)
![]()
[article]
Titre : Search for top‐down and bottom‐up drivers of latitudinal trends in insect herbivory in oak trees in Europe Type de document : Article/Communication Auteurs : Elena Valdés-Correcher, Auteur ; Xoaquín Moreira, Auteur ; Laurent Augusto, Auteur ; Luc Barbaro, Auteur ; Christophe Bouget, Auteur ; Olivier Bouriaud , Auteur ; et al., Auteur
Année de publication : 2021 Projets : 2-Pas d'info accessible - article non ouvert / Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] biochimie
[Termes descripteurs IGN] dommage forestier causé par facteurs naturels
[Termes descripteurs IGN] Europe (géographie politique)
[Termes descripteurs IGN] feuille (végétation)
[Termes descripteurs IGN] oiseau
[Termes descripteurs IGN] Quercus pedunculata
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Aim : The strength of species interactions is traditionally expected to increase toward the Equator. However, recent studies have reported opposite or inconsistent latitudinal trends in the bottom‐up (plant quality) and top‐down (natural enemies) forces driving herbivory. In addition, these forces have rarely been studied together thus limiting previous attempts to understand the effect of large‐scale climatic gradients on herbivory.
Location : Europe. Time period : 2018–2019. Major taxa studied : Quercus robur.
Methods : We simultaneously tested for latitudinal variation in plant–herbivore–natural enemy interactions. We further investigated the underlying climatic factors associated with variation in herbivory, leaf chemistry and attack rates in Quercus robur across its complete latitudinal range in Europe. We quantified insect leaf damage and the incidence of specialist herbivores as well as leaf chemistry and bird attack rates on dummy caterpillars on 261 oak trees.
Results : Climatic factors rather than latitude per se were the best predictors of the large‐scale (geographical) variation in the incidence of gall‐inducers and leaf‐miners as well as in leaf nutritional content. However, leaf damage, plant chemical defences (leaf phenolics) and bird attack rates were not influenced by climatic factors or latitude. The incidence of leaf‐miners increased with increasing concentrations of hydrolysable tannins, whereas the incidence of gall‐inducers increased with increasing leaf soluble sugar concentration and decreased with increasing leaf C : N ratios and lignins. However, leaf traits and bird attack rates did not vary with leaf damage.
Main conclusions : These findings help to refine our understanding of the bottom‐up and top‐down mechanisms driving geographical variation in plant–herbivore interactions, and indicate the need for further examination of the drivers of herbivory on trees.Numéro de notice : A2021-066 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/geb.13244 date de publication en ligne : 31/12/2020 En ligne : https://doi.org/10.1111/geb.13244 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96970
in Global ecology and biogeography > vol 30 n° inconnu (2021)[article]A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements / Bikram Koirala in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
![]()
[article]
Titre : A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements Type de document : Article/Communication Auteurs : Bikram Koirala, Auteur ; Zohreh Zahiri, Auteur ; Paul Scheunders, Auteur Année de publication : 2020 Article en page(s) : pp 7393 - 7405 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] biochimie
[Termes descripteurs IGN] diagnostic foliaire
[Termes descripteurs IGN] feuille (végétation)
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] méthode fondée sur le noyau
[Termes descripteurs IGN] processus gaussien
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] teneur en chlorophylle des feuillesRésumé : (auteur) Spectral measurements are commonly applied for the nondestructive estimation of leaf parameters, such as the concentrations of chlorophyll a and b, carotenoid, anthocyanin, brown pigment, leaf water content, and leaf mass per area for the quantification of vegetation physiology. The most popular way to estimate these parameters is by using spectral vegetation indices. The use of biochemical models allows us to use the full wavelength range (400–2500 nm) and to physically interpret the result. However, their performance is usually lower than that of supervised machine learning regression techniques. Machine learning regression techniques, on the other hand, have the disadvantage that the relationship between estimated parameters and the reflectance/transmission spectra is unclear. In this article, a hybrid between a supervised learning method and physical modeling for the estimation of leaf parameters is proposed. In this method, a machine learning regression technique is applied to learn a mapping from the true hyperspectral data set to a data set that follows the PROSPECT model. The PROSPECT model then reveals the actual leaf parameters. Two mapping methods, based on Gaussian processes (GPs) and kernel ridge regression (KRR) are proposed. As an alternative, mapping onto the leaf absorption spectra is proposed as well. The proposed methodology not only estimates the leaf parameters with a lower error but also solves the interpretation problem of the parameters estimated by the advanced machine learning regression techniques. This method is validated on the ANGERS and LOPEX data set. Numéro de notice : A2020-589 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2982263 date de publication en ligne : 02/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2982263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95919
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7393 - 7405[article]Year-to-year crown condition poorly contributes to ring width variations of beech trees in French ICP level I network / Clara Tallieu in Forest ecology and management, Vol 465 (1st June 2020)
![]()
[article]
Titre : Year-to-year crown condition poorly contributes to ring width variations of beech trees in French ICP level I network Type de document : Article/Communication Auteurs : Clara Tallieu, Auteur ; Vincent Badeau, Auteur ; Denis Allard, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 15 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] dendrochronologie
[Termes descripteurs IGN] Fagus (genre)
[Termes descripteurs IGN] Fagus sylvatica
[Termes descripteurs IGN] feuille (végétation)
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] indice foliaire
[Termes descripteurs IGN] pollution atmosphérique
[Termes descripteurs IGN] sécheresse
[Termes descripteurs IGN] stress hydrique
[Termes descripteurs IGN] surveillance forestière
[Termes descripteurs IGN] variation saisonnière
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Since the 1980-90′s episodes of decline in Central European Forests, forest condition has been surveyed thanks to the trans-national network the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). It has been traditionally accepted that leaf loss is directly related to impairment of physiological condition of the tree. A few studies tried to correlate crown condition and growth trends while others concentrated on linking annual growth with crown observation at one date clustered into fertility classes. However, none focussed on the high frequency synchronism between leaf loss from annual network observations and annual radial growth issued from dendrochronology. Therefore, we jointly studied annual leaf loss observations and tree-ring width measurements on 715 common beech (Fagus sylvatica L.) trees distributed in the French part of the ICP monitoring network. Detrended inter-annual variations of leaf loss and tree-ring width index were used as response variables in the machine-learning algorithm Random Forest to investigate a common response to abiotic (current and lagged) and biotic hazards, to test the extent to which leaf loss helped to predict inter-annual variations in radial growth. Using Random Forest was effective to identify a common sensitivity to soil water deficit at different time lags. Previous-year climatic variables tended to control leaf loss while radial growth was more sensitive to current-year soil water deficit. Late frost damages were observed on crown condition in mountainous regions but no impact was detected on radial growth. Few significant biotic damages were observed on growth or leaf loss. Leaf loss series did not show a clear common signal among trees from a plot as did radial growth and captured fewer pointer years. Radial growth index did not fall below normal until a 20% leaf loss was reached. However, this threshold is driven by a few extreme leaf loss events. As shown by our joint analysis of leaf loss and radial growth pointer years, no relationship occurred in cases of slight or moderate defoliation. Crown condition is a poorer descriptor of tree vitality than radial growth. Numéro de notice : A2020-287 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2020.118071 date de publication en ligne : 01/04/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118071 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95111
in Forest ecology and management > Vol 465 (1st June 2020) . - 15 p.[article]Improved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests / Sruthi M. Krishna Moorthy in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
![]()
[article]
Titre : Improved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests Type de document : Article/Communication Auteurs : Sruthi M. Krishna Moorthy, Auteur ; Kim Calders, Auteur ; Matheus B. Vicari, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3057 - 3070 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] atmosphère terrestre
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] faisceau laser
[Termes descripteurs IGN] feuille (végétation)
[Termes descripteurs IGN] foresterie
[Termes descripteurs IGN] forêt de feuillus
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] Python (langage de programmation)
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] transfert radiatifRésumé : (auteur) Accurately classifying 3-D point clouds into woody and leafy components has been an interest for applications in forestry and ecology including the better understanding of radiation transfer between canopy and atmosphere. The past decade has seen an increase in the methods attempting to classify leaves and wood in point clouds based on radiometric or geometric features. However, classification purely based on radiometric features is sensor-specific, and the method by which the local neighborhood of a point is defined affects the accuracy of classification based on geometric features. Here, we present a leaf-wood classification method combining geometrical features defined by radially bounded nearest neighbors at multiple spatial scales in a machine learning model. We compared the performance of three different machine learning models generated by the random forest (RF), XGBoost, and lightGBM algorithms. Using multiple spatial scales eliminates the need for an optimal neighborhood size selection and defining the local neighborhood by radially bounded nearest neighbors makes the method broadly applicable for point clouds of varying quality. We assessed the model performance at the individual tree- and plot-level on field data from tropical and deciduous forests, as well as on simulated point clouds. The method has an overall average accuracy of 94.2% on our data sets. For other data sets, the presented method outperformed the methods in literature in most cases without the need for additional postprocessing steps that are needed in most of the existing methods. We provide the entire framework as an open-source python package. Numéro de notice : A2020-232 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947198 date de publication en ligne : 31/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947198 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94970
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3057 - 3070[article]Variation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest / Jing Liu in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
![]()
[article]
Titre : Variation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest Type de document : Article/Communication Auteurs : Jing Liu, Auteur ; Andrew K. Skidmore, Auteur ; Tiejun Wang, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 208 - 220 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] angle
[Termes descripteurs IGN] Bavière (Allemagne)
[Termes descripteurs IGN] croissance végétale
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] Fagus sylvatica
[Termes descripteurs IGN] feuille (végétation)
[Termes descripteurs IGN] modèle numérique de surface de la canopéeMots-clés libres : inclinaison longitudinale Leaf inclination angle leaf angle distribution Résumé : (Auteur) Leaf inclination angle and leaf angle distribution (LAD) are important plant structural traits, influencing the flux of radiation, carbon and water. Although leaf angle distribution may vary spatially and temporally, its variation is often neglected in ecological models, due to difficulty in quantification. In this study, terrestrial LiDAR (TLS) was used to quantify the LAD variation in natural European beech (Fagus Sylvatica) forests. After extracting leaf points and reconstructing leaf surface, leaf inclination angle was calculated automatically. The mapping accuracy when discriminating between leaves and woody material was very high across all beech stands (overall accuracy = 87.59%). The calculation accuracy of leaf angles was evaluated using simulated point cloud and proved accurate generally (R2 = 0.88, p Numéro de notice : A2019-075 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.005 date de publication en ligne : 15/01/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92162
in ISPRS Journal of photogrammetry and remote sensing > vol 148 (February 2019) . - pp 208 - 220[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019021 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019023 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Exploitation of hyperspectral data for assessing vegetation health under exposure to petroleum hydrocarbons / Guillaume Lassalle (2019)
PermalinkAnalyzing the vertical distribution of crown material in mixed stand composed of two temperate tree species / Olivier Martin-Ducup in Forests, vol 9 n° 11 (November 2018)
PermalinkEstimating the leaf area of an individual tree in urban areas using terrestrial laser scanner and path length distribution model / Ronghai Hu in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
PermalinkResearch on the estimation model of vegetation water content in halophyte leaves based on the newly developed vegetation indices / Zhe Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 9 (September 2018)
PermalinkDetecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques / Chinsu Lin in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
PermalinkMapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data / Abel Chemura in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
PermalinkEvaluation of seasonal variations of remotely sensed leaf area index over five evergreen coniferous forests / Rong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkCharacterizing vegetation canopy structure using airborne remote sensing data / Debsunder Dutta in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)
PermalinkExamining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy / Xiao Song in ISPRS Journal of photogrammetry and remote sensing, vol 122 (December 2016)
PermalinkMultisensor and multispectral Lidar characterization and classification of a forest environment / Christopher Hopkinson in Canadian journal of remote sensing, vol 42 n° 5 ([01/05/2016])
PermalinkLaser scanning based growth analysis of plants as a new challenge for deformation monitoring / Jan Dupuis in Journal of applied geodesy, vol 10 n° 1 (March 2016)
PermalinkChanges in thermal infrared spectra of plants caused by temperature and water stress / Maria F. Buitrago in ISPRS Journal of photogrammetry and remote sensing, vol 111 (January 2016)
PermalinkMicrowave unmixing with video segmentation for inferring broadleaf and needleleaf brightness temperatures and abundances from mixed forest observations / Lingjia Gu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)
PermalinkCombining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status assessment / Tal Rapaport in ISPRS Journal of photogrammetry and remote sensing, vol 109 (November 2015)
PermalinkEvaluating the impact of leaf-on and leaf-off airborne laser scanning data on the estimation of forest inventory attributes with the area-based approach / Joanne C. White in Canadian Journal of Forest Research, vol 45 n° 11 (November 2015)
PermalinkModeling of the permittivity of holly leaves in frozen environments / Xiaokang Kou in IEEE Transactions on geoscience and remote sensing, vol 53 n° 11 (November 2015)
PermalinkA geometric method for wood-leaf separation using terrestrial and simulated Lidar data / Shengli Tao in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 10 (October 2015)
PermalinkEvaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework / H. Croft in ISPRS Journal of photogrammetry and remote sensing, vol 102 (April 2015)
PermalinkRetrieving surface variables by integrating ground measurements and earth observation data in forest canopies : a case study in Speuldersbos forest / Kitsiri Weligepolage (2015)
![]()
Permalink3D tree reconstruction from simulated small footprint waveform lidar / Jiaying Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 12 (December 2013)
Permalink3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar / Fumiki Hosoi in ISPRS Journal of photogrammetry and remote sensing, vol 82 (August 2013)
PermalinkAssessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy / I.D. Sanches in ISPRS Journal of photogrammetry and remote sensing, vol 78 (April 2013)
PermalinkMulti-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance / G. Wei in ISPRS Journal of photogrammetry and remote sensing, vol 69 (April 2012)
PermalinkLeaf morphological analyses in four European oak species (Quercus) and their hybrids: A comparison of traditional and geometric morphometric methods / Vicenzo Viscosi in Plant Biosystems, vol 143 n° 3 (November 2009)
PermalinkComparing needle and shoot phenology with xylem development on three conifer species in Italy / Sergio Rossi in Annals of Forest Science, Vol 66 n° 2 (march 2009)
PermalinkPermalinkSpectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0-14.0 um) / B. Ribeiro Da Luz in Remote sensing of environment, vol 109 n° 4 (30 August 2007)
PermalinkDetection of stationary foliage-obscured targets by polarimetric millimeter-wave radar / A.Y. Nashashibi in IEEE Transactions on geoscience and remote sensing, vol 43 n° 1 (January 2005)
PermalinkUse of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks / K.L. Smith in Remote sensing of environment, vol 92 n° 2 (15/08/2004)
PermalinkRadar imaging of moving targets in foliage using multifrequency multiaperture polarimetric SAR / G. Wang in IEEE Transactions on geoscience and remote sensing, vol 41 n° 8 (August 2003)
PermalinkThe effect of broadleaf canopies on survey-grade horizontal GPS-GLONASS measurements / Thomas H. Meyer in Surveying and land information systems, vol 62 n° 4 (01/12/2002)
PermalinkLeaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands / Antoine Kremer in Annals of Forest Science, vol 59 n° 7 (novembre 2002)
![]()
PermalinkImprovement of an oak canopy model extracted from digital photogrammetry / P. Gong in Photogrammetric Engineering & Remote Sensing, PERS, vol 68 n° 9 (September 2002)
PermalinkPermalinkUtilisation de la stéréovision pour estimer des paramètres de structure d'un couvert végétal / Nikolay Ivanov in Bulletin [Société Française de Photogrammétrie et Télédétection], n° 131 (Juillet 1993)
PermalinkPermalinkThematic Mapper detection of changes in the leaf area of closed canopy pine plantations in central Massachusetts / S.R. Herwitz in Remote sensing of environment, vol 30 n° 2 (November 1989)
PermalinkDetection of changes in leaf water content using near and middle-infrared reflectances / E.R. Hunt in Remote sensing of environment, vol 30 n° 1 (01/10/1989)
PermalinkBidirectional scattering of light from tree leaves / T.W. Brakke in Remote sensing of environment, vol 29 n° 2 (01/08/1989)
PermalinkThe influence of leaf orientation and the specular component of leaf reflectance on the canopy bidirectional reflectance / Jeff Ross in Remote sensing of environment, vol 27 n° 3 (01/03/1989)
PermalinkSeasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass / M. Shibayama in Remote sensing of environment, vol 27 n° 2 (01/02/1989)
PermalinkA new technique to measure the spectral properties of conifer needles / C.S.T. Daughtry in Remote sensing of environment, vol 27 n° 1 (01/01/1989)
PermalinkPrediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy / D.H. Card in Remote sensing of environment, vol 26 n° 2 (01/11/1988)
PermalinkRelationship between discoloration and histological changes in leaves of trees affected by forest decline / E. Hoque in Remote sensing of environment, vol 26 n° 2 (01/11/1988)
PermalinkThermal infrared (2.5 micrometers to 13.5 micrometers) directional hemispherical reflectance of leaves / J.W. Salisbury in Photogrammetric Engineering & Remote Sensing, PERS, vol 54 n° 9 (september 1988)
Permalink