Descripteur



Etendre la recherche sur niveau(x) vers le bas
Mining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
![]()
[article]
Titre : Mining regional patterns of land use with adaptive adjacent criteria Type de document : Article/Communication Auteurs : Xinmeng Tu, Auteur ; Zhenjie Chen, Auteur ; Beibei Wang, Auteur ; changqing Xu, Auteur Année de publication : 2020 Article en page(s) : pp 418 - 431 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] adjacence
[Termes descripteurs IGN] analyse combinatoire (maths)
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] changement d'utilisation du sol
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] construction
[Termes descripteurs IGN] extraction de modèle
[Termes descripteurs IGN] filtrage spatiotemporel
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] polygone
[Termes descripteurs IGN] région
[Termes descripteurs IGN] relation spatiale
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] urbanisation
[Termes descripteurs IGN] utilisation du sol
[Termes descripteurs IGN] variogrammeRésumé : (auteur) Land use/cover changes (LULC) are complicated and regionally diverse. When mining regional patterns, the use of a spatial relationship that is determined without considering the spatial correlation among geographical objects can lead to problematic results, e.g. mistakenly treating unrelated objects as adjacent. Additionally, traditional prevalence measures are unstable for uneven datasets such as LULC, wherein some land-use change types show small numbers and uneven quantities, and valuable rules for some land-use categories may be ignored. Therefore, we proposed a regional pattern mining method. First, we developed adaptive adjacent criteria, which can be automatically generated for each specific zone to define adjacency for better spatial-temporal mining. Then, a combinational decision model was built to improve the stability of the prevalence measure, which was used to filter out the insignificant spatial-temporal rules. Furthermore, we proposed two levels of land-use pattern mining, i.e. cluster-level mining and polygon-level mining, to first discover hot-spot areas where similar land-use change has occurred frequently and then to determine the location, frequency, and change time of rules related to different land-use activities. The proposed method was used for mining the dependence of land use and regional patterns on land-use changes. Results show that the proposed method can determine the spatial dependence between the land-use categories, as well as regional patterns of land-use changes. According to our research, the study area, Xinbei District, China, is undergoing land-use change involving rapid urbanization, extensive transportation construction, and losses of farmland. Numéro de notice : A2020-487 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1761452 date de publication en ligne : 18/06/2020 En ligne : https://doi.org/10.1080/15230406.2020.1761452 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95655
in Cartography and Geographic Information Science > Vol 47 n° 5 (September 2020) . - pp 418 - 431[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020051 SL Revue Centre de documentation Revues en salle Disponible A sequential Monte Carlo framework for noise filtering in InSAR time series / Mehdi Khaki in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
![]()
[article]
Titre : A sequential Monte Carlo framework for noise filtering in InSAR time series Type de document : Article/Communication Auteurs : Mehdi Khaki, Auteur ; Mick S. Filmer, Auteur ; Will E. Featherstone, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1904 - 1912 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] filtrage spatiotemporel
[Termes descripteurs IGN] filtre adaptatif
[Termes descripteurs IGN] filtre de Kalman
[Termes descripteurs IGN] interféromètrie par radar à antenne synthétique
[Termes descripteurs IGN] méthode de Monte-Carlo
[Termes descripteurs IGN] modèle mathématique
[Termes descripteurs IGN] série temporelleRésumé : (Auteur) This article proposes an alternative filtering technique to improve interferometric synthetic aperture radar (InSAR) time series by reducing residual noise while retaining the ground deformation signal. To this end, for the first time, a data-driven approach is introduced, which is based on Takens’s method within the sequential Monte Carlo framework, allowing for a model-free approach to filter noisy data. Both a Kalman-based filter and a particle filter (PF) are applied within this framework to investigate their impact on retrieving the signals. More specifically, PF and particle smoother [PaSm; to avoid confusion with persistent scatterers (PSs)] are tested for their ability to deal with non-Gaussian noise. A synthetic test based on simulated InSAR time series, as well as a real test, is designed to investigate the capability of the proposed approach compared with the spatiotemporal filtering of InSAR time series. Results indicate that PFs and more specifically PaSm perform better than other applied methods, as indicated by reduced errors in both tests. Two other variants of PF and adaptive unscented Kalman filter (AUKF) are presented and are found to be able to perform similar to PaSm but with reduced computation time. This article suggests that PFs tested here could be applied in InSAR processing chains. Numéro de notice : A2020-091 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950353 date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950353 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94665
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1904 - 1912[article]3D iterative spatiotemporal filtering for classification of multitemporal satellite data sets / Hessah Albanwan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 1 (January 2020)
![]()
[article]
Titre : 3D iterative spatiotemporal filtering for classification of multitemporal satellite data sets Type de document : Article/Communication Auteurs : Hessah Albanwan, Auteur ; Rongjun Qin, Auteur ; Xiaohu Lu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 23 - 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] changement d'utilisation du sol
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données multitemporelles
[Termes descripteurs IGN] filtrage spatiotemporel
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] orthoimageRésumé : (Auteur) The current practice in land cover/land use change analysis relies heavily on the individually classified maps of the multi-temporal data set. Due to varying acquisition conditions (e.g., illumination, sensors, seasonal differences), the classification maps yielded are often inconsistent through time for robust statistical analysis. 3D geometric features have been shown to be stable for assessing differences across the temporal data set. Therefore, in this article we investigate the use of a multi-temporal orthophoto and digital surface model derived from satellite data for spatiotemporal classification. Our approach consists of two major steps: generating per-class probability distribution maps using the random-forest classifier with limited training samples, and making spatiotemporal inferences using an iterative 3D spatiotemporal filter operating on per-class probability maps. Our experimental results demonstrate that the proposed methods can consistently improve the individual classification results by 2%–6% and thus can be an important postclassification refinement approach. Numéro de notice : A2020-049 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.1.23 date de publication en ligne : 01/01/2020 En ligne : https://doi.org/10.14358/PERS.86.1.23 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94534
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 1 (January 2020) . - pp 23 - 31[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020011 SL Revue Centre de documentation Revues en salle Disponible Data-adaptive spatio-temporal filtering of GRACE data / Paoline Prevost in Geophysical journal international, vol 219 n° 3 (December 2019)
![]()
[article]
Titre : Data-adaptive spatio-temporal filtering of GRACE data Type de document : Article/Communication Auteurs : Paoline Prevost, Auteur ; Kristel Chanard , Auteur ; Luce Fleitout, Auteur ; Eric Calais, Auteur ; Damian Walwer, Auteur ; Tonie M. van Dam, Auteur ; Michael Ghil, Auteur
Année de publication : 2019 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : pp 2034 - 2055 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes descripteurs IGN] analyse de spectre singulier
[Termes descripteurs IGN] données géophysiques
[Termes descripteurs IGN] données GRACE
[Termes descripteurs IGN] filtrage spatiotemporel
[Termes descripteurs IGN] harmonique sphériqueRésumé : (auteur) Measurements of the spatio-temporal variations of Earth’s gravity field from the Gravity Recovery and Climate Experiment (GRACE) mission have led to new insights into large spatial mass redistribution at secular, seasonal and subseasonal timescales. GRACE solutions from various processing centres, while adopting different processing strategies, result in rather coherent estimates. However, these solutions also exhibit random as well as systematic errors, with specific spatial patterns in the latter.
In order to dampen the noise and enhance the geophysical signals in the GRACE data, we propose an approach based on a data-driven spatio-temporal filter, namely the Multichannel Singular Spectrum Analysis (M-SSA). M-SSA is a data-adaptive, multivariate, and non-parametric method that simultaneously exploits the spatial and temporal correlations of geophysical fields to extract common modes of variability.
We perform an M-SSA analysis on 13 yr of GRACE spherical harmonics solutions from five different processing centres in a simultaneous setup. We show that the method allows us to extract common modes of variability between solutions, while removing solution-specific spatio-temporal errors that arise from the processing strategies. In particular, the method efficiently filters out the spurious north–south stripes, which are caused in all likelihood by aliasing, due to the imperfect geophysical correction models and low-frequency noise in measurements.
Comparison of the M-SSA GRACE solution with mass concentration (mascons) solutions shows that, while the former remains noisier, it does retrieve geophysical signals masked by the mascons regularization procedure.Numéro de notice : A2019-276 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/gji/ggz409 date de publication en ligne : 19/09/2019 En ligne : https://doi.org/10.1093/gji/ggz409 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95381
in Geophysical journal international > vol 219 n° 3 (December 2019) . - pp 2034 - 2055[article]Microwave indices from active and passive sensors for remote sensing applications / Emanuele Santi (2019)
![]()
Titre : Microwave indices from active and passive sensors for remote sensing applications Type de document : Monographie Auteurs : Emanuele Santi, Editeur scientifique ; Simonetta Paloscia, Editeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2019 Importance : 224 p. Format : 18 x 26 cm ISBN/ISSN/EAN : 978-3-03897-820-6 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] bande Ku
[Termes descripteurs IGN] bande X
[Termes descripteurs IGN] diffusométrie
[Termes descripteurs IGN] filtrage spatiotemporel
[Termes descripteurs IGN] glace de mer
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] prairie
[Termes descripteurs IGN] série temporelleRésumé : (éditeur) Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices. Note de contenu : Editorial
1- Ku-, X- and C-Band microwave backscatter indices from saline snow covers on Arctic first-year sea ice
2- Retrieval of effective correlation length and snow water equivalent from radar and passive microwave measurements
3- Soil moisture from fusion of scatterometer and SAR: closing the scale gap with temporal filtering
4- Using SAR-derived vegetation descriptors in a water cloud model to improve soil
moisture retrieval
5- Sensitivity of Sentinel-1 backscatter to vegetation dynamics: An Austrian case study
6- AMSR2 soil moisture downscaling using temperature and vegetation data
7- Analysis of the Radar Vegetation Index and potential improvements
8- Radiometric microwave indices for remote sensing of land surfaces
9- Soil moisture in the Biebrza wetlands retrieved from Sentinel-1 imagery
10- Exploiting time series of Sentinel-1 and Sentinel-2 imagery to detect meadow phenology in mountain regionsNuméro de notice : 25941 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Monographie DOI : 10.3390/books978-3-03897-821-3 En ligne : https://doi.org/10.3390/books978-3-03897-821-3 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96313 Spatio-temporal filtering for determination of common mode error in regional GNSS networks / Janusz Bogusz in Open geosciences, vol 7 n° 1 (January 2015)
PermalinkSpatiotemporal filtering of regional GNSS network’s position time series with missing data using principle component analysis / Yunzhong Shen in Journal of geodesy, vol 88 n° 1 (January 2014)
PermalinkDesigning origin-destination flow matrices from individual mobile phone paths : the effect of spatiotemporal filtering on flow measurement / Françoise Bahoken (2013)
![]()
Permalink