Descripteur
Documents disponibles dans cette catégorie (49)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Identifying spurious cycle slips based on iterative filtering under disturbed ionospheric conditions for undifferenced GNSS observations / Yan Xiang in Advances in space research, vol 70 n° 11 (December 2022)
[article]
Titre : Identifying spurious cycle slips based on iterative filtering under disturbed ionospheric conditions for undifferenced GNSS observations Type de document : Article/Communication Auteurs : Yan Xiang, Auteur ; Sijie Lyu, Auteur ; Wenxian Yu, Auteur Année de publication : 2022 Article en page(s) : pp 3582 - 3593 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] erreur de positionnement
[Termes IGN] filtre
[Termes IGN] glissement de cycle
[Termes IGN] itération
[Termes IGN] perturbation ionosphérique
[Termes IGN] phase GNSS
[Termes IGN] positionnement ponctuel précis
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) The TurboEdit method is widely used to detect cycle slips on the global navigation satellite system (GNSS) carrier-phase measurements. However, it leads to an increasing number of false alarms in detecting cycle slips under disturbed ionospheric conditions. Besides, once the method detects a cycle slip at one satellite, it treats dual frequencies with cycle slips rather than at one frequency. Considering these two challenges, we developed a solution-based iterative filter detection method to reduce the number of spurious cycle slip detection under disturbed ionospheric conditions. The method initially assumes that there is no cycle slip at each frequency. We then estimate the solutions without cycle slips. A decision of exiting cycle slips is made by examining and comparing the two results solutions with or without cycle slips in terms of usable satellites, ambiguities, and residuals. The uncombined precise point positioning (PPP) during disturbed ionospheric conditions on 17 March 2015 at high latitude was studied to validate the proposed method. Results showed that the detected number of spurious cycle slips was reduced significantly. With fewer marked cycle slips, more stable and smoother positioning performance was achieved when fewer ambiguity parameters were reinitialized. Numéro de notice : A2022-861 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.asr.2022.08.008 Date de publication en ligne : 08/08/2022 En ligne : https://doi.org/10.1016/j.asr.2022.08.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102144
in Advances in space research > vol 70 n° 11 (December 2022) . - pp 3582 - 3593[article]
Titre : Deep learning based vehicle detection in aerial imagery Type de document : Monographie Auteurs : Lars Wilko Sommer, Éditeur scientifique Editeur : Karlsruhe [Allemagne] : KIT Scientific Publishing Année de publication : 2022 Importance : 276 p. Format : 15 x 21 cm ISBN/ISSN/EAN : 978-3-7315-1113-7 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] ancre
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre
[Termes IGN] image aérienne
[Termes IGN] véhiculeRésumé : (éditeur) This book proposes a novel deep learning based detection method, focusing on vehicle detection in aerial imagery recorded in top view. The base detection framework is extended by two novel components to improve the detection accuracy by enhancing the contextual and semantical content of the employed feature representation. To reduce the inference time, a lightweight CNN architecture is proposed as base architecture and a novel module that restricts the search area is introduced. Note de contenu : 1- Introduction
2- Related work
3- Concept
4- Experimental setup
5- Base framework
6- Integration of contextual knowledge
7- Runtime optimization
8- Evaluation
9- Conclusions and outlookNuméro de notice : 28685 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.5445/KSP/1000135415 En ligne : https://doi.org/10.5445/KSP/1000135415 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100015 Éléments pour l'analyse et le traitement d'images : application à l'estimation de la qualité du bois / Rémy Decelle (2022)
Titre : Éléments pour l'analyse et le traitement d'images : application à l'estimation de la qualité du bois Type de document : Thèse/HDR Auteurs : Rémy Decelle, Auteur ; Isabelle Debled-Rennesson, Auteur ; Fleur Longuetaud, Auteur Editeur : Nancy, Metz : Université de Lorraine Année de publication : 2022 Importance : 214 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour l'obtention du Doctorat de l'Université de Lorraine, Mention InformatiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aubier
[Termes IGN] cerne
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] duramen
[Termes IGN] filtre
[Termes IGN] grume
[Termes IGN] morphologie mathématique
[Termes IGN] niveau de gris (image)
[Termes IGN] optimisation par colonie de fourmis
[Termes IGN] qualité du bois
[Termes IGN] représentation discrète
[Termes IGN] segmentation d'image
[Termes IGN] seuillageIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Dans le contexte du changement climatique et de son atténuation, du développement de la bioéconomie circulaire, et d'une pression accrue qui en découle sur la ressource en bois, un des axes de recherche prioritaire est l'optimisation de la transformation de cette ressource qui peut se faire à différents niveaux. L'objectif ici est d'extraire des informations sur la qualité du bois à partir de l'analyse de sections transversales du grumes ou billons de bois en forêt ou en scierie. Pour estimer cette qualité, plusieurs caractéristiques visibles peuvent être extraites : zones d'aubier et de duramen, position de la moelle et du centre géométrique, le nombre de cernes et leur largeur. Dans un premier temps, nous nous intéressons à la segmentation de la grume dans l'image. Cette segmentation rend plus simple l'analyse des autres caractéristiques et permet de localiser le centre géométrique. Pour cela, nous proposons plusieurs approches. D'abord, des méthodes classiques issues du traitement d'images sont abordées, comme la méthode des K-Means ou les contours actifs. Nous utilisons également des réseaux de neurones convolutifs. Nous montrons l'avantage des réseaux de neurones par rapport à ces deux autres méthodes. La deuxième caractéristique estimée est la zone de duramen (zone centrale plus colorée). Nous proposons une nouvelle couche d'attention pour les réseaux de neurones utilisant la morphologie mathématique moins souvent utilisée. Les couches d'attention ont permis aux réseaux d'être plus performants en se focalisant sur les informations les plus pertinentes. Dans notre cadre, l'objectif de cette couche est double : réduire la quantité de paramètres et augmenter les performances. Notre couche d'attention montre de meilleures performances par rapport à d'autres couches d'attention. Dans un troisième temps, nous proposons d'analyser les cernes. Notre méthode est en trois grandes étapes. D'abord, un lissage directionnel pour rehausser les cernes (tout en gardant au mieux les contours) et réduire à la fois la texture intracernes et les marques de sciage. Puis, un seuillage adaptatif pour déterminer les zones de cernes potentiels. Enfin, un deuxième seuillage afin d'avoir les limites de cernes. À partir de la segmentation finale, l'analyse des cernes (nombre, largeur moyenne, etc.) est rendue possible. Enfin, l'estimation de la position de la moelle est abordée. Nous proposons une nouvelle approche originale basée sur l'algorithme des colonies de fourmis pour estimer la position de la moelle. L'utilisation de cet algorithme permet de s'abstraire d'une étape habituelle, à savoir l'accumulation des normales aux tangentes des cernes. Notre méthode montre de nombreux avantages par rapport aux approches de l'état de l'art, réseaux de neurones inclus. Dans une dernière partie, nous présenterons un travail en géométrie discrète : un filtre directionnel. Il estime les segments les plus longs en tout point d'un ensemble connexe. La présentation de cet outil est fait par le biais d'un filtre. En appliquant ce filtre, nous pouvons estimer des caractéristiques géométriques à l'échelle locale. Cet outil a pour objectif d'être appliqué aux cernes. Note de contenu : Introduction
1- Techniques de segmentation
2- Segmentation : les applications aux bois
3- Nouvelles approches du traitement d’images appliquées au bois
4- Détection de la moelle dans l’image
5- Filtre directionnel discret
6- ConclusionNuméro de notice : 24061 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Université de Lorraine : 2022 Organisme de stage : Laboratoire LORIA DOI : sans En ligne : https://hal.univ-lorraine.fr/tel-03794911/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102036 Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation / Hang Zhang in Pattern recognition, vol 121 (January 2022)
[article]
Titre : Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation Type de document : Article/Communication Auteurs : Hang Zhang, Auteur ; Haili Li, Auteur ; Ning Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108201 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification floue
[Termes IGN] classification pixellaire
[Termes IGN] filtre
[Termes IGN] segmentation d'image
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Spatial information is often used to enhance the robustness of traditional fuzzy c-means (FCM) clustering algorithms. Although some recently emerged improvements are remarkable, the computational complexity of these algorithms is high, which may lead to lack of practicability. To address this problem, an efficient variant named the fuzzy clustering algorithm with variable multi-pixel fitting spatial information (FCM-VMF) is presented. First, a fuzzy clustering algorithm with multi-pixel fitting spatial information (FCM-MF) is developed. Specifically, by dividing the input image into several filter windows, the spatial information of all pixels in each filter window can be obtained simultaneously by fitting the pixels in its corresponding neighbourhood window, which enormously reduces the computational complexity. However, the FCM-MF may result in the loss of edge information. Therefore, the FCM-VMF integrates a variable window strategy with FCM-MF. In this strategy, to preserve more edge information, the sizes of the filter window and generalized neighbourhood window are adaptively reduced. The experimental results show that FCM-VMF is as effective as some recent algorithms. Notably, the FCM-VMF has extremely high efficiency, which means it has a better prospect of application. Numéro de notice : A2022-100 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.patcog.2021.108201 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1016/j.patcog.2021.108201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99564
in Pattern recognition > vol 121 (January 2022) . - n° 108201[article]Unsupervised deep representation learning for real-time tracking / Ning Wang in International journal of computer vision, vol 129 n° 2 (February 2021)
[article]
Titre : Unsupervised deep representation learning for real-time tracking Type de document : Article/Communication Auteurs : Ning Wang, Auteur ; Wengang Zhou, Auteur ; Yibing Song, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 400 - 418 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de cible
[Termes IGN] filtre
[Termes IGN] objet mobile
[Termes IGN] oculométrie
[Termes IGN] reconnaissance d'objets
[Termes IGN] réseau neuronal siamois
[Termes IGN] temps réel
[Termes IGN] traçage
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] vision par ordinateurRésumé : (auteur) The advancement of visual tracking has continuously been brought by deep learning models. Typically, supervised learning is employed to train these models with expensive labeled data. In order to reduce the workload of manual annotation and learn to track arbitrary objects, we propose an unsupervised learning method for visual tracking. The motivation of our unsupervised learning is that a robust tracker should be effective in bidirectional tracking. Specifically, the tracker is able to forward localize a target object in successive frames and backtrace to its initial position in the first frame. Based on such a motivation, in the training process, we measure the consistency between forward and backward trajectories to learn a robust tracker from scratch merely using unlabeled videos. We build our framework on a Siamese correlation filter network, and propose a multi-frame validation scheme and a cost-sensitive loss to facilitate unsupervised learning. Without bells and whistles, the proposed unsupervised tracker achieves the baseline accuracy of classic fully supervised trackers while achieving a real-time speed. Furthermore, our unsupervised framework exhibits a potential in leveraging more unlabeled or weakly labeled data to further improve the tracking accuracy. Numéro de notice : A2021-353 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s11263-020-01357-4 Date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.1007/s11263-020-01357-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97604
in International journal of computer vision > vol 129 n° 2 (February 2021) . - pp 400 - 418[article]PermalinkComputer vision-based framework for extracting tectonic lineaments from optical remote sensing data / Ehsan Farahbakhsh in International Journal of Remote Sensing IJRS, vol 41 n°5 (01 - 08 février 2020)PermalinkMulti-dimensional particle filter-based estimation of inter-system phase biases for multi-GNSS real-time integer ambiguity resolution / Yumiao Tian in Journal of geodesy, vol 93 n°7 (July 2019)PermalinkPermalinkDevelopment of a mixed pixel filter for improved dimension estimation using AMCW laser scanner / Qiang Wang in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)PermalinkThe Guided Bilateral Filter: When the Joint/Cross Bilateral Filter Becomes Robust / Laurent Caraffa (2015)PermalinkEin modulares Simulationskonzept zur Evaluierung von Positionssensoren sowie Filter- und Regelalgorithmen am Beispiel des automatisierten Strassenbaus / A. Beetz (2012)PermalinkCombs filtering: improving acquisition and tracking in GNSS receivers / A. Dempster in GPS world, vol 20 n° 3 (March 2009)PermalinkLe traitement du signal sous Matlab / André Quinquis (2007)PermalinkDe-shadowing of satellite/airborne imagery / R. Richter in International Journal of Remote Sensing IJRS, vol 26 n° 15 (August 2005)Permalink