Descripteur
Documents disponibles dans cette catégorie (21)



Etendre la recherche sur niveau(x) vers le bas
Adversarial defenses for object detectors based on Gabor convolutional layers / Abdollah Amirkhani in The Visual Computer, vol 38 n° 6 (June 2022)
![]()
[article]
Titre : Adversarial defenses for object detectors based on Gabor convolutional layers Type de document : Article/Communication Auteurs : Abdollah Amirkhani, Auteur ; Mohammad Karimi, Auteur Année de publication : 2022 Article en page(s) : pp 1929 - 1944 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] filtre de Gabor
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Despite their many advantages and positive features, the deep neural networks are extremely vulnerable against adversarial attacks. This drawback has substantially reduced the adversarial accuracy of the visual object detectors. To make these object detectors robust to adversarial attacks, a new Gabor filter-based method has been proposed in this paper. This method has then been applied on the YOLOv3 with different backbones, the SSD with different input sizes and on the FRCNN; and thus, six robust object detector models have been presented. In order to evaluate the efficacy of the models, they have been subjected to adversarial training via three types of targeted attacks (TOG-fabrication, TOG-vanishing, and TOG-mislabeling) and three types of untargeted random attacks (DAG, RAP, and UEA). The best average accuracy (49.6%) was achieved by the YOLOv3-d model, and for the PASCAL VOC dataset. This is far superior to the best performance and accuracy and obtained in previous works (25.4%). Empirical results show that, while the presented approach improves the adversarial accuracy of the object detector models, it does not affect the performance of these models on clean data. Numéro de notice : A2022-382 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02256-6 Date de publication en ligne : 24/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02256-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100651
in The Visual Computer > vol 38 n° 6 (June 2022) . - pp 1929 - 1944[article]Flexible Gabor-based superpixel-level unsupervised LDA for hyperspectral image classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
![]()
[article]
Titre : Flexible Gabor-based superpixel-level unsupervised LDA for hyperspectral image classification Type de document : Article/Communication Auteurs : Sen Jia, Auteur ; Qingqing Zhao, Auteur ; Jiayue Zhuang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 10394 - 10409 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectrale
[Termes IGN] ondelette de Gabor
[Termes IGN] segmentation d'image
[Termes IGN] superpixelRésumé : (auteur) Hyperspectral images encompass abundant information and provide unique characteristics for material classification. However, the labeling of training samples can be challenging in hyperspectral image classification. To address this problem, this study proposes a framework named flexible Gabor-based superpixel-level unsupervised linear discriminant analysis (FG- Su ULDA) to extract the most informative and discriminating features for classification. First, a number of 3-D flexible Gabor filters are rigorously designed using an asymmetric sinusoidal wave to sufficiently characterize the spatial–spectral structure in hyperspectral images. Then, an unsupervised linear discriminant analysis strategy guided by the entropy rate superpixel (ERS) segmentation algorithm, called Su ULDA, is skillfully introduced to reduce the extracted large amount of FG features. The Su ULDA method not only boosts the classification capability but also increases the peculiarity of features, with the aid of superpixel information. Finally, the achieved features are imported to the popular support vector machine classifier. The proposed FG- Su ULDA framework is applied to four real hyperspectral image data sets, and the experiments constantly prove that our FG- Su ULDA is superior to several state-of-the-art methods in both classification performance and computational efficiency, especially with scarce training samples. The codes of this work are available at http://jiasen.tech/papers/ for the sake of reproducibility. Numéro de notice : A2021-872 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3048994 Date de publication en ligne : 20/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3048994 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99131
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 12 (December 2021) . - pp 10394 - 10409[article]Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features / Bai Zhu in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
![]()
[article]
Titre : Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features Type de document : Article/Communication Auteurs : Bai Zhu, Auteur ; Yuanxin Ye, Auteur ; Liang Zhou, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 129 - 147 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] correction géométrique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] élément d'orientation externe
[Termes IGN] enregistrement de données
[Termes IGN] filtre de Gabor
[Termes IGN] image aérienne
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) Co-registration of aerial imagery and Light Detection and Ranging (LiDAR) data is quite challenging because the different imaging mechanisms produce significant geometric and radiometric distortions between the two multimodal data sources. To address this problem, we propose a robust and effective coarse-to-fine registration method that is conducted in two stages utilizing spatial constraints and Gabor structural features. In the first stage, the LiDAR point cloud data is transformed into an intensity map that is used as the reference image. Then, coarse registration is completed by designing a partition-based Features from Accelerated Segment Test (FAST) operator to extract the uniformly distributed interest points in the aerial images and thereafter performing a local geometric correction based on the collinearity equations using the exterior orientation parameters (EoPs). The coarse registration aims to provide a reliable spatial geometry relationship for the subsequent fine registration and is designed to eliminate rotation and scale changes, as well as making only a few translation differences exist between the images. In the second stage, a novel feature descriptor called multi-Scale and multi-Directional Features of odd Gabor (SDFG) is first built to capture the multi-scale and multi-directional structural properties of the images. Then, the three-dimensional (3D) phase correlation (PC) of the SDFG descriptor is established to detect the control points (CPs) between the aerial and LiDAR intensity image in the frequency domain, where the image matching is accelerated by the 3D Fast Fourier Transform (FFT) technique. Finally, the obtained CPs not only are employed to refine the EoPs, but also are used to achieve the fine registration of the aerial images and LiDAR data. We conduct experiments to verify the robustness of the proposed registration method using three sets of aerial images and LiDAR data with different scene coverage. Experimental results show that the proposed method is robust to geometric distortions and radiometric changes. Moreover, it achieves the registration accuracy of less than 2 pixels for all cases, which outperforms the current four state-of-the-art methods, demonstrating its superior registration performance. Numéro de notice : A2021-773 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.09.010 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.09.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98830
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 129 - 147[article]A feature based change detection approach using multi-scale orientation for multi-temporal SAR images / R. Vijaya Geetha in European journal of remote sensing, vol 54 sup 2 (2021)
![]()
[article]
Titre : A feature based change detection approach using multi-scale orientation for multi-temporal SAR images Type de document : Article/Communication Auteurs : R. Vijaya Geetha, Auteur ; S. Kalaivani, Auteur Année de publication : 2021 Article en page(s) : pp 248 - 264 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse de groupement
[Termes IGN] anisotropie
[Termes IGN] chatoiement
[Termes IGN] classification non dirigée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection de changement
[Termes IGN] filtre de Gabor
[Termes IGN] image multitemporelle
[Termes IGN] image radar moirée
[Termes IGN] matrice de confusion
[Termes IGN] transformation en ondelettesRésumé : (auteur) Excellent operation regardless of weather conditions and superior resolution independent of sensor light are the most attractive and desired features of synthetic aperture radar (SAR) imagery. This paper proposes an exclusive multi-scale with multiple orientation approach for multi-temporal SAR images. This approach integrates pre-processing and change detection. Pre-processing is performed on the SAR imagery through speckle reducing anisotropic diffusion and discrete wavelet transform. The processed speckle-free images are designed by Log-Gabor filter bank in terms of multi-scale with multiple orientations. The maximum magnitude of multiple orientations is concatenated to obtain feature-based scale representation. Each scale is dealt with multiple orientations and is compared by band-wise subtraction to retrieve difference image (DI) coefficient. The series of the difference coefficients from each scale are add-on together to estimate a DI. Thus, the resultant image of multi-scale orientation gives perception of detailed information with specific contour. Constrained k-means clustering algorithm is preferred to achieve change and un-change map. Performance of the proposed approach is validated on three real SAR image datasets. The effective change detection is examined by using confusion matrix parameters. Experimental results are described to show the efficacy of the proposed approach. Numéro de notice : A2021-819 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2020.1759457 Date de publication en ligne : 12/06/2020 En ligne : https://doi.org/10.1080/22797254.2020.1759457 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98924
in European journal of remote sensing > vol 54 sup 2 (2021) . - pp 248 - 264[article]Superpixel-based multitask learning framework for hyperspectral image classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)
![]()
[article]
Titre : Superpixel-based multitask learning framework for hyperspectral image classification Type de document : Article/Communication Auteurs : Sen Jia, Auteur ; Bin Deng, Auteur ; Jiasong Zhu, Auteur ; Xiuping Jia, Auteur Année de publication : 2017 Article en page(s) : pp 2575 - 2588 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectraleRésumé : (Auteur) Due to the high spectral dimensionality of hyperspectral images as well as the difficult and time-consuming process of collecting sufficient labeled samples in practice, the small sample size scenario is one crucial problem and a challenging issue for hyperspectral image classification. Fortunately, the structure information of materials, reflecting region of homogeneity in the spatial domain, offers an invaluable complement to the spectral information. Assuming some spatial regularity and locality of surface materials, it is reasonable to segment the image into different homogeneous parts in advance, called superpixel, which can be used to improve the classification performance. In this paper, a superpixel-based multitask learning framework has been proposed for hyperspectral image classification. Specifically, a set of 2-D Gabor filters are first applied to hyperspectral images to extract discriminative features. Meanwhile, a superpixel map is generated from the hyperspectral images. Second, a superpixel-based spatial-spectral Schroedinger eigenmaps (S4E) method is adopted to effectively reduce the dimensions of each extracted Gabor cube. Finally, the classification is carried out by a support vector machine (SVM)-based multitask learning framework. The proposed approach is thus termed Gabor S4E and SVM-based multitask learning (GS4E-MTLSVM). A series of experiments is conducted on three real hyperspectral image data sets to demonstrate the effectiveness of the proposed GS4E-MTLSVM approach. The experimental results show that the performance of the proposed GS4E-MTLSVM is better than those of several state-of-the-art methods, while the computational complexity has been greatly reduced, compared with the pixel-based spatial-spectral Schroedinger eigenmaps method. Numéro de notice : A2017-466 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2647815 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2647815 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86389
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 5 (May 2017) . - pp 2575 - 2588[article]Deep supervised and contractive neural network for SAR image classification / Jie Geng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)
PermalinkDiscriminative low-rank Gabor filtering for spectral–spatial hyperspectral image classification / Lin He in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
PermalinkUnsupervised segmentation of high-resolution remote sensing images based on classical models of the visual receptive field / Miaozhong Xu in Geocarto international, vol 30 n° 9 - 10 (October - November 2015)
PermalinkLocal binary patterns and extreme learning machine for hyperspectral imagery classification / Wei Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
PermalinkGabor feature-based collaborative representation for hyperspectral imagery classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 53 n° 2 (February 2015)
PermalinkSemi-supervised classification for hyperspectral imagery based on spatial-spectral Label Propagation / L. Wang in ISPRS Journal of photogrammetry and remote sensing, vol 97 (November 2014)
PermalinkInformation content of very high resolution SAR images: study of feature extraction and imaging parameters / Corneliu Dimitru in IEEE Transactions on geoscience and remote sensing, vol 51 n° 8 (August 2013)
PermalinkSparse representation of GPR traces with application to signal classification / Wenbin Shao in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)
PermalinkDétection et identification de zones de végétation arborée: utilisation conjointe d'images satellite RapidEye et de données BDOrtho / François Tassin (2012)
PermalinkDelineation and geometric modeling of road networks / C. Poullis in ISPRS Journal of photogrammetry and remote sensing, vol 65 n° 2 (March - April 2010)
Permalink