Descripteur
Documents disponibles dans cette catégorie (25)



Etendre la recherche sur niveau(x) vers le bas
Recurrent origin–destination network for exploration of human periodic collective dynamics / Xiaojian Chen in Transactions in GIS, vol 26 n° 1 (February 2022)
![]()
[article]
Titre : Recurrent origin–destination network for exploration of human periodic collective dynamics Type de document : Article/Communication Auteurs : Xiaojian Chen, Auteur ; Jiayi Xie, Auteur ; Changjiang Xiao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 317 - 340 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données localisées dynamiques
[Termes IGN] flux
[Termes IGN] origine - destination
[Termes IGN] planification urbaine
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] taxi
[Termes IGN] Wuhan (Chine)Résumé : (auteur) While daily periodic movements of individuals have been widely studied, their collective dynamics are not understood. To capture periodic collective dynamics, this article represents individual daily movements as a time series of directed weighted origin–destination (OD) networks, and proposes an approach to identify a sub-network called the “recurrent OD network”, which contains frequent edges appearing in each day. Taxi trajectory data over a period of 6 months in Wuhan, China are used for the case study. Here, we extracted the recurrent OD networks for each 2-h period on a given day, and compared them with the corresponding “major OD network” defined by both frequent and infrequent edges. Results show that the recurrent OD networks coincidentally exhibit spatially localized community structures and distinctive patterns of inflow and outflow for each region within a day. Overall, both methodology and findings in this study might make significant contributions in a range of fields, such as urban planning, regional economic development, and infectious disease control. Numéro de notice : A2022-179 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12849 Date de publication en ligne : 05/10/2021 En ligne : https://doi.org/10.1111/tgis.12849 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99838
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 317 - 340[article]SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows / Qiliang Liu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows Type de document : Article/Communication Auteurs : Qiliang Liu, Auteur ; Jie Yang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 253 - 279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] classification barycentrique
[Termes IGN] flux
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] mobilité urbaine
[Termes IGN] noeud
[Termes IGN] origine - destination
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau routier
[Termes IGN] taxi
[Termes IGN] trajet (mobilité)Résumé : (auteur) Identifying clusters from individual origin–destination (OD) flows is vital for investigating spatial interactions and flow mapping. However, detecting arbitrarily-shaped and non-uniform flow clusters from network-constrained OD flows continues to be a challenge. This study proposes a shared nearest-neighbor-based clustering method (SNN_flow) for inhomogeneous OD flows constrained by a road network. To reveal clusters of varying shapes and densities, a normalized density for each OD flow is defined based on the concept of shared nearest-neighbor, and flow clusters are constructed using the density-connectivity mechanism. To handle large amounts of disaggregated OD flows, an efficient method for searching the network-constrained k-nearest flows is developed based on a local road node distance matrix. The parameters of SNN_flow are statistically determined: the density threshold is modeled as a significance level of a significance test, and the number of nearest neighbors is estimated based on the variance of the kth nearest distance. SNN_flow is compared with three state-of-the-art methods using taxicab trip data in Beijing. The results show that SNN_flow outperforms existing methods in identifying flow clusters with irregular shapes and inhomogeneous distributions. The clusters identified by SNN_flow can reveal human mobility patterns in Beijing. Numéro de notice : A2022-163 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1899184 Date de publication en ligne : 16/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1899184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99786
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 253 - 279[article]Pedestrian fowl prediction in open public places using graph convolutional network / Menghang Liu in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
![]()
[article]
Titre : Pedestrian fowl prediction in open public places using graph convolutional network Type de document : Article/Communication Auteurs : Menghang Liu, Auteur ; Luning Li, Auteur ; Qiang Li, Auteur Année de publication : 2021 Article en page(s) : n° 455 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] espace public
[Termes IGN] flux
[Termes IGN] modèle de simulation
[Termes IGN] navigation pédestre
[Termes IGN] planification urbaine
[Termes IGN] réseau neuronal de graphes
[Termes IGN] Shenzhen
[Termes IGN] variation temporelleRésumé : (auteur) Open public places, such as pedestrian streets, parks, and squares, are vulnerable when the pedestrians thronged into the sidewalks. The crowd count changes dynamically over time with various external factors, such as surroundings, weekends, and peak hours, so it is essential to predict the accurate and timely crowd count. To address this issue, this study introduces graph convolutional network (GCN), a network-based model, to predict the crowd flow in a walking street. Compared with other grid-based methods, the model is capable of directly processing road network graphs. Experiments show the GCN model and its extension STGCN consistently and significantly outperform other five baseline models, namely HA, ARIMA, SVM, CNN and LSTM, in terms of RMSE, MAE and R2. Considering the computation efficiency, the standard GCN model was selected to predict the crowd. The results showed that the model obtains superior performances with higher prediction precision on weekends and peak hours, of which R2 are above 0.9, indicating the GCN model can capture the pedestrian features in the road network effectively, especially during the periods with massive crowds. The results will provide practical references for city managers to alleviate road congestion and help pedestrians make smarter planning and save travel time. Numéro de notice : A2021-550 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10070455 Date de publication en ligne : 02/07/2021 En ligne : https://doi.org/10.3390/ijgi10070455 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98073
in ISPRS International journal of geo-information > vol 10 n° 7 (July 2021) . - n° 455[article]Spatial analysis of subway passenger traffic in Saint-Petersburg / Tatiana Baltyzhakova in Geodesy and cartography, vol 47 n° 1 (January 2021)
![]()
[article]
Titre : Spatial analysis of subway passenger traffic in Saint-Petersburg Type de document : Article/Communication Auteurs : Tatiana Baltyzhakova, Auteur ; Aleksei Romanchicov, Auteur Année de publication : 2021 Article en page(s) : pp 10 - 20 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Blender
[Termes IGN] diagramme de Voronoï
[Termes IGN] flux
[Termes IGN] Mapbox
[Termes IGN] modèle numérique de surface
[Termes IGN] planification urbaine
[Termes IGN] QGIS
[Termes IGN] R (langage)
[Termes IGN] Saint-Petersbourg
[Termes IGN] trafic
[Termes IGN] transport publicRésumé : (auteur) The purpose of the paper is to create clear visualization of passenger traffic for Saint Petersburg subway system. This visualization can be used to better understand the passenger flow and to make more informed decisions in future planning. Research was based on officially published information about passenger traffic on subway station for years 2016 and 2018. Visualization was created with the variety of methods and software: Voronoi diagrams (QGIS software), social gravitation potential (R programming language), presentation of gravitation potential as a relief (Blender software), service zones of ground transport accessibility (2GIS, QGIS and Mapbox mapping platform). In this research, authors propose the use of intersection between the service zones and social gravitation potential isolines as an instrument for spatial analysis of traffic data. Analysis shown that current development of subway system does not correspond to passenger distribution. All stations were classified according to their accessibility and propositions about future directions of development were made. Numéro de notice : A2021-451 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3846/gac.2021.11980 Date de publication en ligne : 12/03/2021 En ligne : https://doi.org/10.3846/gac.2021.11980 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97869
in Geodesy and cartography > vol 47 n° 1 (January 2021) . - pp 10 - 20[article]
Titre : Benefiting from local rigidity in 3D point cloud processing Type de document : Thèse/HDR Auteurs : Zan Gojcic, Auteur Editeur : Zurich : Eidgenossische Technische Hochschule ETH - Ecole Polytechnique Fédérale de Zurich EPFZ Année de publication : 2021 Importance : 141 p. Format : 21 x 30 cm Note générale : bibliographie
A thesis submitted to attain the degree of Doctor of Sciences of ETH ZurichLangues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] capteur actif
[Termes IGN] champ vectoriel
[Termes IGN] déformation d'image
[Termes IGN] données lidar
[Termes IGN] effondrement de terrain
[Termes IGN] enregistrement de données
[Termes IGN] filtrage du bruit
[Termes IGN] flux
[Termes IGN] image 3D
[Termes IGN] navigation autonome
[Termes IGN] orientation du capteur
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] téléphone intelligent
[Termes IGN] traitement de nuage de points
[Termes IGN] voxelIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Incorporating 3D understanding and spatial reasoning into (intelligent) algorithms is crucial for solving several tasks in fields such as engineering geodesy, risk assessment, and autonomous driving. Humans are capable of reasoning about 3D spatial relations even from a single 2D image. However, making the priors that we rely on explicit and integrating them into computer programs is very challenging. Operating directly on 3D input data, such as 3D point clouds, alleviates the need to lift 2D data into a 3D representation within the task-specific algorithm and hence reduces the complexity of the problem. The 3D point clouds are not only a better-suited input data representation, but they are also becoming increasingly easier to acquire. Indeed, nowadays, LiDAR sensors are even integrated into consumer devices such as mobile phones. However, these sensors often have a limited field of view, and hence multiple acquisitions are required to cover the whole area of interest. Between these acquisitions, the sensor has to be moved and pointed in a different direction. Moreover, the world that surrounds us is also dynamic and might change as well. Reasoning about the motion of both the sensor and the environment, based on point clouds acquired in two-time steps, is therfore an integral part of point cloud processing. This thesis focuses on incorporating rigidity priors into novel deep learning based approaches for dynamic 3D perception from point cloud data. Specifically, the tasks of point cloud registration, deformation analysis, and scene flow estimation are studied. At first, these tasks are incorporated into a common framework where the main difference is in the level of rigidity assumptions that are imposed on the motion of the scene or
the acquisition sensor. Then, the tasks specific priors are proposed and incorporated into novel deep learning architectures. While the global rigidity can be assumed in point cloud registration, the motion patterns in deformation analysis and scene flow estimation are more complex. Therefore, the global rigidity prior has to be relaxed to local or instancelevel rigidity, respectively. Rigidity priors not only add structure to the aforementioned tasks, which prevents physically implausible estimates and improves the generalization of the algorithms, but in some cases also reduce the supervision requirements. The proposed approaches were quantitatively and qualitatively evaluated on several datasets, and they yield favorable performance compared to the state-of-the-art.Numéro de notice : 28660 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD : Sciences : ETH Zurich : 2021 DOI : sans En ligne : https://www.research-collection.ethz.ch/handle/20.500.11850/523368 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99817 Uber movement data: a proxy for average one-way commuting times by car / Yeran Sun in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
PermalinkA derivation of the Vlasov–Navier–Stokes model for aerosol flows from kinetic theory / Etienne Bernard in Communications in Mathematical Sciences, vol 15 n° 6 ([01/09/2017])
PermalinkPermalinkPour le renouvellement de la sémiologie de la carte de flux / Françoise Bahoken in Cartes & Géomatique, n° 222 (décembre 2014)
PermalinkSequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery / M.R. James in ISPRS Journal of photogrammetry and remote sensing, vol 97 (November 2014)
PermalinkA triangular form-based multiple flow algorithm to estimate overland flow distribution and accumulation on a digital elevation model / Petter Pilesjö in Transactions in GIS, vol 18 n° 1 (February 2014)
PermalinkExprimer la complexité : exercice appliqué à l’économie / Anne-Marie Romera in Cahiers de l'Institut d'aménagement et d'urbanisme de la région Île-de-France, n° 166 (octobre 2013)
PermalinkIntegration of water transport pathways in a maple tree: responses of sap flow to branch severing / Nadezhda Nadezhdina in Annals of Forest Science, vol 67 n° 1 (January-February 2010)
PermalinkLa délicate représentation du mouvement / Françoise de Blomac in SIG la lettre, n° 109 (septembre 2009)
PermalinkVisualizing migration flows using kriskograms / N. Xiao in Cartography and Geographic Information Science, vol 36 n° 2 (April 2009)
Permalink