Descripteur
Documents disponibles dans cette catégorie (27)



Etendre la recherche sur niveau(x) vers le bas
MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction / Du Yin in Geoinformatica, vol 27 n° 1 (January 2023)
![]()
[article]
Titre : MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction Type de document : Article/Communication Auteurs : Du Yin, Auteur ; Renhe Jiang, Auteur ; Jiewen Deng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 77 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] données multitemporelles
[Termes IGN] données spatiotemporelles
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] origine - destination
[Termes IGN] réseau neuronal de graphes
[Termes IGN] système de transport intelligent
[Termes IGN] trafic urbain
[Termes IGN] transport public
[Termes IGN] utilisateurRésumé : (auteur) The passenger flow prediction of the public metro system is a core and critical part of the intelligent transportation system, and is essential for traffic management, metro planning, and emergency safety measures. Most methods chose the recent segment from historical data as input to predict the future traffic flow; however, this would lead to the loss of the inherent characteristic information of the metro passenger flow’s daily morning and evening peak. Therefore, this study aggregates the recent-term and long-term information and use a long-term Gated Convolutional Neural Network (Gated CNN) to extract the temporal feature from the complex historical data. On the other hand, typical models did not consider the different spatial dependencies between different metro stations; this work proposes various adjacent relationships to characterize the degree of association between nodes. In order to extract spatial and temporal features at the same time, the historical data of recent-term and long-term is merged together to extract spatial features through a multi-graph neural network module. By combining Gated CNN and multi-graph module, we propose a multi-time multi-graph neural network named MTMGNN for metro passenger flow prediction. The result of our experiment on real-world datasets shows that our model MTMGNN is better than all state-of-art methods. Numéro de notice : A2023-113 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-022-00466-1 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.1007/s10707-022-00466-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102478
in Geoinformatica > vol 27 n° 1 (January 2023) . - pp 77 - 105[article]Street-level traffic flow and context sensing analysis through semantic integration of multisource geospatial data / Yatao Zhang in Transactions in GIS, vol 26 n° 8 (December 2022)
![]()
[article]
Titre : Street-level traffic flow and context sensing analysis through semantic integration of multisource geospatial data Type de document : Article/Communication Auteurs : Yatao Zhang, Auteur ; Martin Raubal, Auteur Année de publication : 2022 Article en page(s) : pp 3330 - 3348 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] allocation de Dirichlet latente
[Termes IGN] appariement sémantique
[Termes IGN] approche hiérarchique
[Termes IGN] données multisources
[Termes IGN] espace urbain
[Termes IGN] flux
[Termes IGN] milieu urbain
[Termes IGN] point d'intérêt
[Termes IGN] segmentation en régions
[Termes IGN] Singapour
[Termes IGN] trafic routier
[Termes IGN] utilisation du solRésumé : (auteur) Sensing urban spaces from multisource geospatial data is vital to understanding the transportation system in the urban context. However, the complexity of urban context and its indirect interaction with traffic flow deepen the difficulty of exploring their relationship. This study proposes a geo-semantic framework first to generate semantic representations of multi-hierarchical urban context and street-level traffic flow, and then investigate their mutual correlation and predictability using a novel semantic matching method. The results demonstrate that each street is associated with its multi-hierarchical spatial signatures of urban context and street-level temporal signatures of traffic flow. The correlation between urban context and traffic flow displays higher values after semantic matching than those in multi-hierarchies. Moreover, we found that utilizing traffic flow to predict urban context results in better accuracy than the reversed prediction. The results of signature analysis and relationship exploration can contribute to a deeper understanding of context-aware transportation research. Numéro de notice : A2022-916 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.13005 Date de publication en ligne : 27/11/2022 En ligne : https://doi.org/10.1111/tgis.13005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102348
in Transactions in GIS > vol 26 n° 8 (December 2022) . - pp 3330 - 3348[article]Recurrent origin–destination network for exploration of human periodic collective dynamics / Xiaojian Chen in Transactions in GIS, vol 26 n° 1 (February 2022)
![]()
[article]
Titre : Recurrent origin–destination network for exploration of human periodic collective dynamics Type de document : Article/Communication Auteurs : Xiaojian Chen, Auteur ; Jiayi Xie, Auteur ; Changjiang Xiao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 317 - 340 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données localisées dynamiques
[Termes IGN] flux
[Termes IGN] origine - destination
[Termes IGN] planification urbaine
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] taxi
[Termes IGN] Wuhan (Chine)Résumé : (auteur) While daily periodic movements of individuals have been widely studied, their collective dynamics are not understood. To capture periodic collective dynamics, this article represents individual daily movements as a time series of directed weighted origin–destination (OD) networks, and proposes an approach to identify a sub-network called the “recurrent OD network”, which contains frequent edges appearing in each day. Taxi trajectory data over a period of 6 months in Wuhan, China are used for the case study. Here, we extracted the recurrent OD networks for each 2-h period on a given day, and compared them with the corresponding “major OD network” defined by both frequent and infrequent edges. Results show that the recurrent OD networks coincidentally exhibit spatially localized community structures and distinctive patterns of inflow and outflow for each region within a day. Overall, both methodology and findings in this study might make significant contributions in a range of fields, such as urban planning, regional economic development, and infectious disease control. Numéro de notice : A2022-179 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12849 Date de publication en ligne : 05/10/2021 En ligne : https://doi.org/10.1111/tgis.12849 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99838
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 317 - 340[article]SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows / Qiliang Liu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows Type de document : Article/Communication Auteurs : Qiliang Liu, Auteur ; Jie Yang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 253 - 279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] classification barycentrique
[Termes IGN] flux
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] mobilité urbaine
[Termes IGN] noeud
[Termes IGN] origine - destination
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau routier
[Termes IGN] taxi
[Termes IGN] trajet (mobilité)Résumé : (auteur) Identifying clusters from individual origin–destination (OD) flows is vital for investigating spatial interactions and flow mapping. However, detecting arbitrarily-shaped and non-uniform flow clusters from network-constrained OD flows continues to be a challenge. This study proposes a shared nearest-neighbor-based clustering method (SNN_flow) for inhomogeneous OD flows constrained by a road network. To reveal clusters of varying shapes and densities, a normalized density for each OD flow is defined based on the concept of shared nearest-neighbor, and flow clusters are constructed using the density-connectivity mechanism. To handle large amounts of disaggregated OD flows, an efficient method for searching the network-constrained k-nearest flows is developed based on a local road node distance matrix. The parameters of SNN_flow are statistically determined: the density threshold is modeled as a significance level of a significance test, and the number of nearest neighbors is estimated based on the variance of the kth nearest distance. SNN_flow is compared with three state-of-the-art methods using taxicab trip data in Beijing. The results show that SNN_flow outperforms existing methods in identifying flow clusters with irregular shapes and inhomogeneous distributions. The clusters identified by SNN_flow can reveal human mobility patterns in Beijing. Numéro de notice : A2022-163 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1899184 Date de publication en ligne : 16/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1899184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99786
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 253 - 279[article]Pedestrian fowl prediction in open public places using graph convolutional network / Menghang Liu in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
![]()
[article]
Titre : Pedestrian fowl prediction in open public places using graph convolutional network Type de document : Article/Communication Auteurs : Menghang Liu, Auteur ; Luning Li, Auteur ; Qiang Li, Auteur Année de publication : 2021 Article en page(s) : n° 455 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] espace public
[Termes IGN] flux
[Termes IGN] modèle de simulation
[Termes IGN] navigation pédestre
[Termes IGN] planification urbaine
[Termes IGN] réseau neuronal de graphes
[Termes IGN] Shenzhen
[Termes IGN] variation temporelleRésumé : (auteur) Open public places, such as pedestrian streets, parks, and squares, are vulnerable when the pedestrians thronged into the sidewalks. The crowd count changes dynamically over time with various external factors, such as surroundings, weekends, and peak hours, so it is essential to predict the accurate and timely crowd count. To address this issue, this study introduces graph convolutional network (GCN), a network-based model, to predict the crowd flow in a walking street. Compared with other grid-based methods, the model is capable of directly processing road network graphs. Experiments show the GCN model and its extension STGCN consistently and significantly outperform other five baseline models, namely HA, ARIMA, SVM, CNN and LSTM, in terms of RMSE, MAE and R2. Considering the computation efficiency, the standard GCN model was selected to predict the crowd. The results showed that the model obtains superior performances with higher prediction precision on weekends and peak hours, of which R2 are above 0.9, indicating the GCN model can capture the pedestrian features in the road network effectively, especially during the periods with massive crowds. The results will provide practical references for city managers to alleviate road congestion and help pedestrians make smarter planning and save travel time. Numéro de notice : A2021-550 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10070455 Date de publication en ligne : 02/07/2021 En ligne : https://doi.org/10.3390/ijgi10070455 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98073
in ISPRS International journal of geo-information > vol 10 n° 7 (July 2021) . - n° 455[article]Spatial analysis of subway passenger traffic in Saint-Petersburg / Tatiana Baltyzhakova in Geodesy and cartography, vol 47 n° 1 (January 2021)
PermalinkPermalinkUber movement data: a proxy for average one-way commuting times by car / Yeran Sun in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
PermalinkA derivation of the Vlasov–Navier–Stokes model for aerosol flows from kinetic theory / Etienne Bernard in Communications in Mathematical Sciences, vol 15 n° 6 ([01/09/2017])
PermalinkPermalinkPour le renouvellement de la sémiologie de la carte de flux / Françoise Bahoken in Cartes & Géomatique, n° 222 (décembre 2014)
PermalinkSequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery / M.R. James in ISPRS Journal of photogrammetry and remote sensing, vol 97 (November 2014)
PermalinkA triangular form-based multiple flow algorithm to estimate overland flow distribution and accumulation on a digital elevation model / Petter Pilesjö in Transactions in GIS, vol 18 n° 1 (February 2014)
PermalinkExprimer la complexité : exercice appliqué à l’économie / Anne-Marie Romera in Cahiers de l'Institut d'aménagement et d'urbanisme de la région Île-de-France, n° 166 (octobre 2013)
PermalinkIntegration of water transport pathways in a maple tree: responses of sap flow to branch severing / Nadezhda Nadezhdina in Annals of Forest Science, vol 67 n° 1 (January-February 2010)
Permalink