Descripteur



Etendre la recherche sur niveau(x) vers le bas
An area merging method in map generalization considering typical characteristics of structured geographic objects / Chengming Li in Cartography and Geographic Information Science, vol 48 n° 3 (May 2021)
![]()
[article]
Titre : An area merging method in map generalization considering typical characteristics of structured geographic objects Type de document : Article/Communication Auteurs : Chengming Li, Auteur ; Yong Yin, Auteur ; Pengda Wu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 210 - 224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] conflit d'intégration
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] programmation adaptée à l'objet
[Termes descripteurs IGN] structure spatiale
[Termes descripteurs IGN] tessellation
[Termes descripteurs IGN] zone tampon
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Merging is an important operation in the map generalization of land-cover and other coverages. We define structured geographic objects as collections of adjacent areas with homogeneous semantics that are regularly arranged as spatial structures. Existing studies have concentrated on unstructured objects, which will lead to the structured ones losing part or even most of the typical characteristics during merging. Therefore, as a supplement to the existing mature merging method, a targeted method was proposed in this paper to address the merging problem of structured geographic objects. First, structured geographic objects were classified into four typical patterns, and they were identified automatically according to seven spatial structure parameters. Second, a Miter-type buffer transformation was introduced to extract the overall boundary of structured geographic objects, and areas inside the overall boundary were processed with the most appropriate merging operations for their pattern. Finally, the corresponding merged results of structured geographic objects were inserted back into the merged result of the original land-cover data by using the NOT operation, and the spatial conflicts near the boundary were adjusted. We test our method for a dataset of geographical census data for a city in China. The experimental results revealed that compared with state-of-the-art method, the proposed method produces more reasonable generalization result by effectively identifying and maintaining the typical spatial structures; moreover, the proposed method also preserves the planar tessellation characteristic of land-cover data and the balance of area variation in each land-cover class. Numéro de notice : A2021-314 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1863862 date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1080/15230406.2020.1863862 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97530
in Cartography and Geographic Information Science > vol 48 n° 3 (May 2021) . - pp 210 - 224[article]A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection / Xi Wu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
![]()
[article]
Titre : A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection Type de document : Article/Communication Auteurs : Xi Wu, Auteur ; Zhenwei Shi, Auteur ; Zhengxia Zou, Auteur Année de publication : 2021 Article en page(s) : pp 87 - 104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] altitude
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection des nuages
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] latitude
[Termes descripteurs IGN] longitude
[Termes descripteurs IGN] modèle statistique
[Termes descripteurs IGN] neige
[Termes descripteurs IGN] Normalized Difference Snow IndexRésumé : (auteur) Geographic information such as the altitude, latitude, and longitude are common but fundamental meta-records in remote sensing image products. In this paper, it is shown that such a group of records provides important priors for cloud and snow detection in remote sensing imagery. The intuition comes from some common geographical knowledge, where many of them are important but are often overlooked. For example, it is generally known that snow is less likely to exist in low-latitude or low-altitude areas, and clouds in different geographic may have various visual appearances. Previous cloud and snow detection methods simply ignore the use of such information, and perform detection solely based on the image data (band reflectance). Due to the neglect of such priors, most of these methods are difficult to obtain satisfactory performance in complex scenarios (e.g., cloud-snow coexistence). In this paper, a novel neural network called “Geographic Information-driven Network (GeoInfoNet)” is proposed for cloud and snow detection. In addition to the use of the image data, the model integrates the geographic information at both training and detection phases. A “geographic information encoder” is specially designed, which encodes the altitude, latitude, and longitude of imagery to a set of auxiliary maps and then feeds them to the detection network. The proposed network can be trained in an end-to-end fashion with dense robust features extracted and fused. A new dataset called “Levir_CS” for cloud and snow detection is built, which contains 4,168 Gaofen-1 satellite images and corresponding geographical records, and is over 20× larger than other datasets in this field. On “Levir_CS”, experiments show that the method achieves 90.74% intersection over union of cloud and 78.26% intersection over union of snow. It outperforms other state of the art cloud and snow detection methods with a large margin. Feature visualizations also show that the method learns some important priors which is close to the common sense. The proposed dataset and the code of GeoInfoNet are available in https://github.com/permanentCH5/GeoInfoNet. Numéro de notice : A2021-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.023 date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97187
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 87 - 104[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021041 SL Revue Centre de documentation Revues en salle Disponible 081-2021043 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2021042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Parsing of urban facades from 3D point clouds based on a novel multi-view domain / Wei Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)
![]()
[article]
Titre : Parsing of urban facades from 3D point clouds based on a novel multi-view domain Type de document : Article/Communication Auteurs : Wei Wang, Auteur ; Yuan Xu, Auteur ; Yingchao Ren, Auteur ; Gang Wang, Auteur Année de publication : 2021 Article en page(s) : pp 283-293 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] façade
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] segmentation hiérarchique
[Termes descripteurs IGN] segmentation multi-échelle
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) Recently, performance improvement in facade parsing from 3D point clouds has been brought about by designing more complex network structures, which cost huge computing resources and do not take full advantage of prior knowledge of facade structure. Instead, from the perspective of data distribution, we construct a new hierarchical mesh multi-view data domain based on the characteristics of facade objects to achieve fusion of deep-learning models and prior knowledge, thereby significantly improving segmentation accuracy. We comprehensively evaluate the current mainstream method on the RueMonge 2014 data set and demonstrate the superiority of our method. The mean intersection-over-union index on the facade-parsing task reached 76.41%, which is 2.75% higher than the current best result. In addition, through comparative experiments, the reasons for the performance improvement of the proposed method are further analyzed. Numéro de notice : A2021-333 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.4.283 date de publication en ligne : 01/04/2021 En ligne : https://doi.org/10.14358/PERS.87.4.283 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97531
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 4 (April 2021) . - pp 283-293[article]Precipitable water vapor fusion based on a generalized regression neural network / Bao Zhang in Journal of geodesy, vol 95 n° 4 (April 2021)
![]()
[article]
Titre : Precipitable water vapor fusion based on a generalized regression neural network Type de document : Article/Communication Auteurs : Bao Zhang, Auteur ; Yibing Yao, Auteur Année de publication : 2021 Article en page(s) : n° 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes descripteurs IGN] Amérique du nord
[Termes descripteurs IGN] coefficient d'étalonnage
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] données GNSS
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image Aqua-MODIS
[Termes descripteurs IGN] image Terra-MODIS
[Termes descripteurs IGN] précipitation
[Termes descripteurs IGN] prévision météorologique
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] vapeur d'eau
[Termes descripteurs IGN] variation temporelleRésumé : (auteur) Water vapor plays an important role in Earth’s weather and climate processes and energy transfer. Plenty of techniques have developed to monitor precipitable water vapor (PWV), but joint use of different techniques has some problems, including systematic biases, different spatiotemporal coverages and resolutions among different datasets. To address the above problems and improve the data utilization, we propose to use a generalized regression neural network (GRNN) to fuse PWVs from Global Navigation Satellite System (GNSS), Moderate-Resolution Imaging Spectroradiometer (MODIS), and European Centre for Medium‐Range Weather Forecasts Reanalysis 5 (ERA5). The core idea of this method is to use the high-quality GNSS PWV to calibrate and optimize the relatively low-quality MODIS and ERA5 PWV through the constructed GRNNs. Using the proposed method, we generated more than 400 PWV maps that combine GNSS, MODIS, and ERA5 PWVs in North America in 2018. Results show that the overall bias, standard deviation (STD), and root-mean-square (RMS) error are 0.0 mm, 2.1 mm, and 2.2 mm for the improved MODIS PWV, and 0.0 mm, 1.6 mm, and 1.6 mm for the improved ERA5 PWV. Compared to the original MODIS and ERA5 PWV, the total improvements are 37.1% and 15.8% in terms of RMS. The RMS improvements are mainly contributed from the calibration of bias for the MODIS PWV and optimization for the ERA5 PWV. It also demonstrates that the original MODIS PWV tends to be greater than the GNSS PWV while the ERA5 PWV has very small biases. After calibration and optimization, the correlation coefficients between the modified PWV and the GNSS PWV are 0.96 for the MODIS PWV and 0.98 for the ERA5 PWV. The proposed method also diminishes the temporal and spatial variations in accuracy, generating homogeneous PWV products. Since the biases among the three datasets are well removed and data accuracies are improved to the same level, they are thus easily fused and jointly used. Numéro de notice : A2021-259 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01482-z date de publication en ligne : 01/03/2021 En ligne : https://doi.org/10.1007/s00190-021-01482-z Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97299
in Journal of geodesy > vol 95 n° 4 (April 2021) . - n° 36[article]A data fusion-based framework to integrate multi-source VGI in an authoritative land use database / Lanfa Liu in International Journal of Digital Earth, vol inconnu ([01/02/2021])
![]()
[article]
Titre : A data fusion-based framework to integrate multi-source VGI in an authoritative land use database Type de document : Article/Communication Auteurs : Lanfa Liu, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Laurence Jolivet
, Auteur ; Arnaud Le Bris
, Auteur ; Linda M. See, Auteur
Année de publication : 2021 Projets : 2-Pas d'info accessible - article non ouvert / Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes descripteurs IGN] base de données d'occupation du sol
[Termes descripteurs IGN] base de données localisées de référence
[Termes descripteurs IGN] données hétérogènes
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] intégration de données
[Termes descripteurs IGN] mise à jour de base de données
[Termes descripteurs IGN] OCS GE
[Termes descripteurs IGN] théorie de Dempster-ShaferRésumé : (auteur) Updating an authoritative Land Use and Land Cover (LULC) database requires many resources. Volunteered geographic information (VGI) involves citizens in the collection of data about their spatial environment. There is a growing interest in using existing VGI to update authoritative databases. This paper presents a framework aimed at integrating multi-source VGI based on a data fusion technique, in order to update an authoritative land use database. Each VGI data source is considered to be an independent source of information, which is fused together using Dempster-Shafer Theory (DST). The framework is tested in the updating of the authoritative land use data produced by the French National Mapping Agency. Four data sets were collected from several in-situ and remote campaigns run between 2018 and 2020 by contributors with varying profiles. The data fusion approach achieved an overall accuracy of 85.6% for the 144 features having at least two contributions when the confidence threshold was set to 0.05. Despite the heterogeneity and limited amount of VGI used, the results are promising, with 99% of the LU polygons updated or enriched. These results show the potential of using multi-source VGI to update or enrich authoritative LU data and potentially LULC data more generally. Numéro de notice : A2021-069 Affiliation des auteurs : UGE-LaSTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/17538947.2020.1842524 date de publication en ligne : 05/11/2020 En ligne : https://doi.org/10.1080/17538947.2020.1842524 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96522
in International Journal of Digital Earth > vol inconnu [01/02/2021][article]A deep learning framework for matching of SAR and optical imagery / Lloyd Haydn Hughes in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkClassification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkSaliency-guided single shot multibox detector for target detection in SAR images / Lan Du in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkAdaptive Statistical Superpixel Merging With Edge Penalty for PolSAR Image Segmentation / Deliang Xiang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkDirectionally constrained fully convolutional neural network for airborne LiDAR point cloud classification / Congcong Wen in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkA LiDAR–optical data fusion approach for identifying and measuring small stream impoundments and dams / Benjamin Swan in Transactions in GIS, Vol 24 n° 1 (February 2020)
PermalinkMoving objects aware sensor mesh fusion for indoor reconstruction from a couple of 2D lidar scans / Teng Wu (2020)
PermalinkOn the joint exploitation of optical and SAR satellite imagery for grassland monitoring / Anatol Garioud (2020)
PermalinkRelevés par Lidar mobile de cours d’eau et intégration des profils aux relevés bathymétriques réalisés par sondeur mono-faisceau / Guillaume Didier (2020)
PermalinkMultitemporal Landsat-MODIS fusion for cropland drought monitoring in El Salvador / Nguyen-Thanh Son in Geocarto international, vol 34 n° 12 ([15/09/2019])
PermalinkSentinel-2 sharpening using a reduced-rank method / Magnus Orn Ulfarsson in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)
PermalinkCalculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 / Ali Mokhtari in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkImproving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne lidar and image data using active contours / David Griffiths in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkUsing direct transformation approach as an alternative technique to fuse global digital elevation models with GPS/levelling measurements in Egypt / Hossam Talaat Elshambaky in Journal of applied geodesy, vol 13 n° 3 (July 2019)
PermalinkExploring semantic elements for urban scene recognition: Deep integration of high-resolution imagery and OpenStreetMap (OSM) / Wenzhi Zhao in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
PermalinkLearning high-level features by fusing multi-view representation of MLS point clouds for 3D object recognition in road environments / Zhipeng Luo in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
Permalink3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction / Maximilian Brell in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
PermalinkPermalinkDétection et localisation d'objets 3D par apprentissage profond en topologie capteur / Pierre Biasutti (2019)
![]()
PermalinkPermalinkFusion de sets de photos provenant de capteurs différents dans le domaine de l’archéologie / Hugo De Paulis (2019)
PermalinkMéthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier / Benjamin Tardy (2019)
PermalinkMultimodal scene understanding: algorithms, applications and deep learning, ch. 8. Multimodal localization for embedded systems: a survey / Imane Salhi (2019)
PermalinkPermalinkPermalinkSegmentation d'image par intégration itérative de connaissances / Mahaman Sani Chaibou Salaou (2019)
PermalinkTraitement d'images multispectrales et spatialisation des données pour la caractérisation de la matière organique des phases solides naturelles / Kevin Jacq (2019)
PermalinkAncient Chinese architecture 3D preservation by merging ground and aerial point clouds / Xiang Gao in ISPRS Journal of photogrammetry and remote sensing, vol 143 (September 2018)
PermalinkFusion of images and point clouds for the semantic segmentation of large-scale 3D scenes based on deep learning / Rui Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 143 (September 2018)
PermalinkIncorporating crown shape information for identifying ash tree species / Haijian Liu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 8 (août 2018)
PermalinkHackAIR : towards raising awareness about air quality in Europe by developing a collective online platform / Evangelos Kosmidis in ISPRS International journal of geo-information, vol 7 n° 5 (May 2018)
PermalinkCombining land cover products using a minimum divergence and a Bayesian data fusion approach / Sarah Gengler in International journal of geographical information science IJGIS, vol 32 n° 3-4 (March - April 2018)
PermalinkImproving the upscaling of land cover maps by fusing uncertainty and spatial structure information / Peijun Sun in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 2 (February 2018)
PermalinkPermalinkPermalinkLocalisation d'objets urbains à partir de sources multiples dont des images aériennes / Lionel Pibre (2018)
PermalinkNavigation des personnes aux moyens des technologies des smartphones et des données d’environnements cartographiés / Fadoua Taia Alaoui (2018)
PermalinkPermalinkPermalinkSynergie des données Sentinel optiques et radar pour l’observation et l’analyse de la végétation du littoral du Pays de Brest / Antoine Billey (2018)
PermalinkFusion of hyperspectral and LiDAR data using sparse and low-rank component analysis / Behnood Rasti in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
PermalinkSalient object detection in complex scenes via D-S evidence theory based region classification / Chunlei Yang in The Visual Computer, vol 33 n° 11 (November 2017)
PermalinkAn information fusion approach for PALSAR data to retrieve soil moisture / Ankita Jain in Geocarto international, vol 32 n° 9 (September 2017)
PermalinkOn the fusion of lidar and aerial color imagery to detect urban vegetation and buildings / Madhurima Bandyopadhyay in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 2 (February 2017)
PermalinkCombination of image descriptors for the exploration of cultural photographic collections / Neelanjan Bhowmik in Journal of Electronic Imaging, vol 26 n° 1 (January - February 2017)
PermalinkHandbook on advances in remote sensing and geographic information systems / Margarita N. Favorskaya (2017)
PermalinkSegmentation sémantique de données de télédétection multimodale : application aux peuplements forestiers / Clément Dechesne (2017)
![]()
PermalinkSegmentation sémantique de peuplements forestiers par analyse conjointe d’imagerie multispectrale très haute résolution et de données 3D Lidar aéroportées / Clément Dechesne (2017)
PermalinkDEM Fusion of Elevation REST API Data in Support of Rapid Flood Modelling / Heather McGrath in Geomatica [en ligne], vol 70 n° 4 (December 2016)
PermalinkThe open data HELI-DEM DTM for the western alpine area: computation and publication / L. Biagi in Applied geomatics, vol 8 n° 3-4 (December 2016)
PermalinkRelative importance analysis of Landsat, waveform LIDAR and PALSAR inputs for deciduous biomass estimation / Alyssa Endres in European journal of remote sensing, vol 49 (2016)
PermalinkTowards fusing uncertain location data from heterogeneous sources / Bing Zhang in Geoinformatica [en ligne], vol 20 n° 2 (April - June 2016)
PermalinkSpatial data fusion in spatial data infrastructures using linked data / Stefan Wiemann in International journal of geographical information science IJGIS, vol 30 n° 3-4 (March - April 2016)
PermalinkMatrix-based discriminant subspace ensemble for hyperspectral image spatial–spectral feature fusion / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 2 (February 2016)
PermalinkPermalinkFusion of hyperspectral images and digital surface models for urban object extraction / Janja Avbelj (2016)
PermalinkFusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs / Xiaojie Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 111 (January 2016)
PermalinkA merging solution for close-range DEMs to optimize surface coverage and measurement resolution / Stéphane Bertin in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 1 (January 2016)
PermalinkUrban classification by the fusion of thermal infrared hyperspectral and visible data / Jiayi Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 12 (December 2015)
PermalinkExtraction des zones cohérentes par l’analyse spatio-temporelle d’images de télédétection / Thomas Guyet in Revue internationale de géomatique, vol 25 n° 4 (octobre - décembre 2015)
PermalinkFusion of waveform LiDAR data and hyperspectral imagery for land cover classification / Hongzhou Wang in ISPRS Journal of photogrammetry and remote sensing, vol 108 (October 2015)
PermalinkEstimation de paramètres forestiers par données Lidar aéroporté et imagerie satellitaire RapidEye : étude de sensibilité / Jean-Matthieu Monnet in Revue Française de Photogrammétrie et de Télédétection, n° 211 - 212 (juillet - décembre 2015)
PermalinkApport du LiDAR dans le géoréférencement d'images hyperspectrales en vue d'un couplage LiDAR/hyperspectral / Antoine Ba in Revue Française de Photogrammétrie et de Télédétection, n° 210 (Avril 2015)
PermalinkAccounting for Galileo–GPS inter-system biases in precise satellite positioning / Jacek Paziewski in Journal of geodesy, vol 89 n° 1 (January 2015)
PermalinkExtraction of optimal spectral bands using hierarchical band merging out of hyperspectral data / Arnaud Le Bris (2015)
PermalinkFusion of Lidar and SAR data for land-cover mapping in natural environments / Clara Barbanson (2015)
PermalinkPermalinkMapping fuels at the wildland-urban interface using colour ortho-images and Lidar data / Melissa F. Rosa in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)
PermalinkLand cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data / Kun Jia in ISPRS Journal of photogrammetry and remote sensing, vol 93 (July 2014)
PermalinkStatistical data fusion of multi-sensor AOD over the Continental United States / Sweta Jinnagara Puttaswamy in Geocarto international, vol 29 n° 1 - 2 (February - April 2014)
PermalinkEarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data / Natalie Robinson in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)
PermalinkPermalinkLocalisation de véhicule par satellites couplée à la navigation à l'estime et aux données cartographiques / David Bétaille (2014)
PermalinkAn object-based system for Lidar data fusion and feature extraction / Jarlath P. M. O'Neil-Dunne in Geocarto international, vol 28 n° 3-4 (June - July 2013)
PermalinkPedestrian network extraction from fused aerial imagery (orthoimages) and laser imagery (lidar) / Piyawan Kasemsuppakorn in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 4 (April 2013)
PermalinkGeneration and dissemination of a national virtual 3D city and landscape model for the Netherlands / Sander J. Elberink in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 2 (February 2013)
PermalinkA multi-scale approach to mapping canopy height / Gordon M. Green in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 2 (February 2013)
PermalinkSegmentation of terrestrial laser scanning data using geometry and image information / S. Barnea in ISPRS Journal of photogrammetry and remote sensing, vol 76 (February 2013)
PermalinkPermalinkInformation fusion in the redundant-wavelet-transform domain for noise-robust hyperspectral classification / S. Prasad in IEEE Transactions on geoscience and remote sensing, vol 50 n° 9 (October 2012)
PermalinkUpward-fusion urban DTM generating method using airborne Lidar data / Z. Chen in ISPRS Journal of photogrammetry and remote sensing, vol 72 (August 2012)
PermalinkPermalinkAutomatic roof model reconstruction from ALS data and 2D ground plans based on side projection and the TMR [TIN-Merging and Reshaping] algorithm / J. Rau in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 6 supplement (December 2011)
PermalinkData fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction / R. Beger in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 6 supplement (December 2011)
PermalinkFusion of camera images and laser scans for wide baseline 3D scene alignment in urban environments / Michael Ying Yang in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 6 supplement (December 2011)
PermalinkChange detection in a topographic building database using submetric satellite images / Arnaud Le Bris (2011)
![]()
PermalinkPermalinkHigh resolution topographic model of Panarea Island by fusion of photogrammetric, lidar and bathymetric digital terrain models / Massimo Fabris in Photogrammetric record, vol 25 n° 132 (December 2010 - February 2011)
PermalinkAn integrated approach for visual analysis of a multisource moving objects knowledge base / N. Wllems in International journal of geographical information science IJGIS, vol 24 n° 10 (october 2010)
PermalinkA two-step displacement correction algorithm for registration of lidar point clouds and aerial images without orientation parameters / H. Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 76 n° 10 (October 2010)
PermalinkFusion d'images optique et radar à haute résolution pour la mise à jour de bases de données cartographiques / Vincent Poulain (2010)
PermalinkFusion des connaissances pour apparier des données géographiques / Ana-Maria Olteanu-Raimond in Revue internationale de géomatique, vol 19 n° 3 (septembre - novembre 2009)
Permalink3D information extraction from laser point clouds covering complex road junctions / Sander J. Oude Elberink in Photogrammetric record, vol 24 n° 125 (March - May 2009)
PermalinkPermalinkShaping polyhedral buildings by the fusion of vector maps and lidar point clouds / L.C. Chen in Photogrammetric Engineering & Remote Sensing, PERS, vol 74 n° 9 (September 2008)
Permalinkvol 46 n° 5 - May 2008 - Special issue on data fusion (Bulletin de IEEE Transactions on geoscience and remote sensing) / Geoscience and remote sensing society
PermalinkMulti-sensor model-data fusion for estimation of hydrologic and energy flux parameters / L. Renzullo in Remote sensing of environment, vol 112 n° 4 (15/04/2008)
PermalinkSize-Constrained Region Merging (SCRM): an automated delineation tool for assisted photointerpretation / G. Castilla in Photogrammetric Engineering & Remote Sensing, PERS, vol 74 n° 4 (April 2008)
PermalinkPermalinkPermalinkClassification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data / G.W. Geerling in International Journal of Remote Sensing IJRS, vol 28 n°19-20 (October 2007)
PermalinkFilling the voids in the SRTM elevation model: a tin-based delta surface approach / E. Luedeling in ISPRS Journal of photogrammetry and remote sensing, vol 62 n° 4 (September 2007)
Permalink4D data fusion for the geospatial intelligence community: Intelligent GIS / F. Artes in Geoinformatics, vol 10 n° 3 (01/04/2007)
PermalinkGeneration of orthoimages and perspective views with automatic visibility checking and texture blending / G.E. Karras in Photogrammetric Engineering & Remote Sensing, PERS, vol 73 n° 4 (April 2007)
PermalinkA robust surface matching technique for integrated monitoring of coastal geohazards / P. Miller in Marine geodesy, vol 30 n° 1-2 (March - June 2007)
PermalinkFusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization / B. Koetz in Remote sensing of environment, vol 106 n° 4 (28/02/2007)
PermalinkPermalinkPermalinkPermalinkPermalinkA pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery / L. Zhang in IEEE Transactions on geoscience and remote sensing, vol 44 n° 10 Tome 2 (October 2006)
PermalinkEffect of generalization on area features: a comparative study of two strategies / T. Cheng in Cartographic journal (the), vol 43 n° 2 (July 2006)
PermalinkThe use of second-generation wavelets to combine a gravimetric quasigeoid model with GPS-levelling data / A. Soltanpour in Journal of geodesy, vol 80 n° 2 (May 2006)
PermalinkCouplage de données laser aéroporté et photogrammétriques pour l'analyse de scènes tridimensionnelles / Frédéric Bretar (2006)
PermalinkExtraction of tidal channel networks from aerial photographs alone and combined with laser altimetry / Bharat Lohani in International Journal of Remote Sensing IJRS, vol 27 n°1-2 (January 2006)
PermalinkPermalinkProgress in Spatial Data Handling, 12th International Symposium on Spatial Data Handling / Andreas Riedl (2006)
PermalinkPermalinkPhotogrammétrie et archéologie sous-marine profonde : le cas de l'épave étrusque grand Ribaud F [2ème partie] / P. Drap in XYZ, n° 104 (septembre - novembre 2005)
PermalinkSPOT 5 pour la détection d'urbanisation / V. Lacroix in Revue Française de Photogrammétrie et de Télédétection, n° 178 (Septembre 2005)
PermalinkMise à jour de MNT intégré terre - mer et application au prisme megatidal du Mont Saint-michel (France) / F. Kaveh in Revue Française de Photogrammétrie et de Télédétection, n° 177 (Juin 2005)
PermalinkAn algebraic approach to automated geospatial information fusion / Matt Duckham in International journal of geographical information science IJGIS, vol 19 n° 5 (may 2005)
PermalinkA robust technique for precise registration of radar and optical satellite images / T.D. Hong in Photogrammetric Engineering & Remote Sensing, PERS, vol 71 n° 5 (May 2005)
PermalinkUpdating a digital geographic database using Vehicle-borne Laser scanners and line cameras / H. Zhao in Photogrammetric Engineering & Remote Sensing, PERS, vol 71 n° 4 (April 2005)
PermalinkExtraction d'éléments curvilignes guidée par des mécanismes attentionnels pour des images de télédétection : approche par fusion de données / Gilles Cotteret (2005)
PermalinkFusion de relevés optiques et acoustiques de sites archéologiques sous marins : études de cas dans l'anse des catalans, Marseille, Volume 1. Mémoire / Rémi Provin (2005)
PermalinkPermalinkUn premier pas vers l'extraction de MNS urbains en interférometrie RSO à haute résolution par fusion de détecteurs / C. Tison in Revue Française de Photogrammétrie et de Télédétection, n° 176 (Décembre 2004)
PermalinkEstimating intrinsic accuracy of airborne laser data with local 3D-Offsets / Frédéric Bretar (01/10/2004)
PermalinkPermalinkAutomatic change detection by evidential fusion of change indices / Sylvie Le Hégarat-Mascle in Remote sensing of environment, vol 91 n° 3 (30/06/2004)
PermalinkPermalinkBelief change and pre-orders: a brief overview / Salem Benferhat in International journal of geographical information science IJGIS, vol 18 n° 4 (june 2004)
PermalinkModélisation de l'environnement par des robots mobiles et aériens / Sylvie Lacroix in Géomatique expert, n° 35 (01/06/2004)
Permalinkvol 18 n° 4 - june 2004 - Special issue : Data fusion (Bulletin de International journal of geographical information science IJGIS) / Geoffrey Edwards
PermalinkUnification des bases de données géographiques : recherches au laboratoire COGIT de l'IGN / Sébastien Mustière in Géomatique expert, n° 32 (01/03/2004)
PermalinkPermalinkObject-based classification of remote sensing data for change detection / Volker Walter in ISPRS Journal of photogrammetry and remote sensing, vol 58 n° 3-4 (January - June 2004)
PermalinkCombining metric aerial photography and near-infrared videography to define within-field soil sampling frameworks / G.G. Wright in Geocarto international, vol 18 n° 4 (December 2003 - February 2004)
PermalinkData fusion and feature extraction in the wavelet domain / Magnus Orn Ulfarsson in International Journal of Remote Sensing IJRS, vol 24 n° 20 (October 2003)
PermalinkA Markov random field-based approach to decision-level fusion for remote sensing image classification / R. Nishii in IEEE Transactions on geoscience and remote sensing, vol 41 n° 10 (October 2003)
PermalinkSynergetic fusion of GPS and photogrammetrically generated elevation models / J.P. Mills in Photogrammetric Engineering & Remote Sensing, PERS, vol 69 n° 4 (April 2003)
PermalinkPermalinkPermalinkPermalinkA new merging process for data integration based on the Discrete Fréchet Distance / Thomas Devogele (2002)
PermalinkReconstruction de primitives 3D d'ouvrages architecturaux à partir d'images de distance et d'images optiques / Matthieu Deveau (2002)
PermalinkPermalinkFusing interferometric radar and Laser altimeter data to estimate surface topography and vegetation heights / K.C. Slatton in IEEE Transactions on geoscience and remote sensing, vol 39 n° 11 (November 2001)
PermalinkEvaluation du potentiel éolien offshore par radars spatio-portés : vers une approche multisource / Nicolas Fichaux in Bulletin [Société Française de Photogrammétrie et Télédétection], n° 163 (Juillet 2001)
PermalinkEvaluating offshore wind energy resource by space borne radar sensors / Nicolas Fichaux (14/05/2001)
PermalinkSuitability of laser for DTM generation: a case study in the context of road planning and design / Luisa M. Gomes Pereira in ISPRS Journal of photogrammetry and remote sensing, vol 54 n° 4 (September - November 1999)
PermalinkAnalyse de données Radarsat et fusion avec des données SPOT dans le cadre d'une étude ADRO (Application Developpement and Research Opportinity), prévision de la pollution des eaux par les phytosanitaires sur le site test d'un bassin du Grand Morin (Seine-et-Marne) / J.F. Mombo (1998)
PermalinkApport des cartes topographiques pour l'analyse de scène en imagerie aérienne / Philippe Guérin (1996)
Permalink