Descripteur



Etendre la recherche sur niveau(x) vers le bas
Sentinel-2 sharpening using a reduced-rank method / Magnus Orn Ulfarsson in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)
![]()
[article]
Titre : Sentinel-2 sharpening using a reduced-rank method Type de document : Article/Communication Auteurs : Magnus Orn Ulfarsson, Auteur ; Frosti Palsson, Auteur ; Mauro Dalla Mura, Auteur ; Johannes R. Sveinsson, Auteur Année de publication : 2019 Article en page(s) : pp 6408 - 6420 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] affinage d'image
[Termes descripteurs IGN] ajustement de paramètres
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] largeur de bandeRésumé : (auteur) Recently, the Sentinel-2 (S2) satellite constellation was deployed for mapping and monitoring the Earth environment. Images acquired by the sensors mounted on the S2 platforms have three levels of spatial resolution: 10, 20, and 60 m. In many remote sensing applications, the availability of images at the highest spatial resolution (i.e., 10 m for S2) is often desirable. This can be achieved by generating a synthetic high-resolution image through data fusion. To this end, researchers have proposed techniques exploiting the spectral/spatial correlation inherent in multispectral data to sharpen the lower resolution S2 bands to 10 m. In this paper, we propose a novel method that formulates the sharpening process as a solution to an inverse problem. We develop a cyclic descent algorithm called S2Sharp and an associated tuning parameter selection algorithm based on generalized cross validation and Bayesian optimization. The tuning parameter selection method is evaluated on a simulated data set. The effectiveness of S2Sharp is assessed experimentally by comparisons to state-of-the-art methods using both simulated and real data sets. Numéro de notice : A2019-340 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2906048 date de publication en ligne : 22/04/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2906048 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93377
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 9 (September 2019) . - pp 6408 - 6420[article]Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 / Ali Mokhtari in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
![]()
[article]
Titre : Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 Type de document : Article/Communication Auteurs : Ali Mokhtari, Auteur ; Hamideh Noory, Auteur ; Farrokh Pourshakouri, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 231 - 245 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bilan énergétique
[Termes descripteurs IGN] blé (céréale)
[Termes descripteurs IGN] cultures
[Termes descripteurs IGN] évapotranspiration
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] orge (céréale)
[Termes descripteurs IGN] TéhéranRésumé : (Auteur) Evapotranspiration is considered to be an important component of allocating water to agricultural sector; therefore, the more accurate this parameter is, the more optimized the water use can be. This study was conducted in order to evaluate the Landsat 8 and Sentinel-2 data (A and B), both separately and combined, in potential evapotranspiration (ETp) and single crop coefficient (Kc) estimations. Field measurements such as crop height, leaf area index (LAI), land surface temperature (LST), air temperature above canopy (AT), and spectral data were exploited in the evaluating process throughout the entirety of 2017–18 growing season under winter wheat and barley cultivations in the Agricultural Research Farms of the University of Tehran. The novel method of Multi-Sensor Data Fusion using the Priestly-Taylor equation was taken into practice for satellite-based ETp (MSDF-ET) calculation from the combination of MODIS thermal and Landsat 8 and Sentinel-2 multispectral data. Thermal images were downscaled by the means of the TsHARP algorithm. Thus, prior to ETp calculation, the thermal sharpening algorithm calculated using different spectral indices (SI) was assessed. The SI included NDVI, SAVI, SR, NDWI, NDWIg, and LSWI. The subsequent results were representative of the LSWI qualification under both Landsat 8 and Sentinel-2 conditions against thermal and spectral measurements. Also the satellite-based ETp strongly correlated with the ETp derived from the field data illuminating the promising accuracy of the MSDF-ET method in both Landsat 8 and Sentinel-2 data. In the end, the time series of Kc obtained from the combination of satellites were fairly indicative of the real-world variations under different vegetation cover and crop growth stages. Overall, using Landsat 8 and Sentinel-2 products in integration with each other could significantly result in more reliable decisions in agricultural water resources management. Numéro de notice : A2019-270 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.011 date de publication en ligne : 24/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93088
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 231 - 245[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne lidar and image data using active contours / David Griffiths in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
![]()
[article]
Titre : Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne lidar and image data using active contours Type de document : Article/Communication Auteurs : David Griffiths, Auteur ; Jan Boehm, Auteur Année de publication : 2019 Article en page(s) : pp 70 - 83 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] bati
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] données publiques
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] Royaume-Uni
[Termes descripteurs IGN] scène urbaine
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] zone ruraleRésumé : (Auteur) Robust and reliable automatic building detection and segmentation from aerial images/point clouds has been a prominent field of research in remote sensing, computer vision and point cloud processing for a number of decades. One of the largest issues associated with deep learning methods is the high quantity of data required for training. To help address this we present a method to improve public GIS building footprint labels by using Morphological Geodesic Active Contours (MorphGACs). We demonstrate by improving the quality of building footprint labels for detection and semantic segmentation, more robust and reliable models can be obtained. We evaluate these methods over a large UK-based dataset of 24556 images containing 169835 building instances. This is achieved by training several Mask/Faster R-CNN and RetinaNet deep convolutional neural networks. Networks are supplied with both RGB and fused RGB-lidar data. We offer quantitative analysis on the benefits of the inclusion of depth data for building segmentation. By employing both methods we achieve a detection accuracy of 0.92 (mAP@0.5) and segmentation f1 scores of 0.94 over a 4911 test images ranging from urban to rural scenes. Numéro de notice : A2019-265 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.013 date de publication en ligne : 06/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.013 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93079
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 70 - 83[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Using direct transformation approach as an alternative technique to fuse global digital elevation models with GPS/levelling measurements in Egypt / Hossam Talaat Elshambaky in Journal of applied geodesy, vol 13 n° 3 (July 2019)
![]()
[article]
Titre : Using direct transformation approach as an alternative technique to fuse global digital elevation models with GPS/levelling measurements in Egypt Type de document : Article/Communication Auteurs : Hossam Talaat Elshambaky, Auteur Année de publication : 2019 Article en page(s) : pp 159 - 177 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Nivellement
[Termes descripteurs IGN] collocation par moindres carrés
[Termes descripteurs IGN] Egypte
[Termes descripteurs IGN] formule de Molodensky
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] méthode fiable
[Termes descripteurs IGN] MNS GTOPO30
[Termes descripteurs IGN] MNS SRTM
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] séparateur à vaste margeRésumé : (auteur) Open global digital elevation models (GDEMs) represent a free and important source of information that is available to any country. Fusion processing between global and national digital elevation models is neither easy nor inexpensive. Hence, an alternative solution to fuse a GDEM (GTOPO30 or SRTM 1) with national GPS/levelling measurements is adopted. Herein, a transformation process between the GDEMs and national GPS/levelling measurements is applied using parametric and non-parametric equations. Two solutions are implemented before and after the filtration of raw data from outliers to assess the ability of the generated corrector surface model to absorb the effect of the outliers’ existence. In addition, a reliability analysis is conducted to select the most suitable transformation technique. We found that when both the fitting and prediction properties have equal priority, least-squares collocation integrated with a least-squares support vector machine inherited with a linear or polynomial kernel function exhibits the most accurate behavior. For the GTOPO30 model, before filtration of the raw data, there is an improvement in the mean and root mean square of errors by 39.31 % and 68.67 %, respectively. For the SRTM 1 model, the improvement in mean and root mean square values reached 86.88 % and 75.55 %, respectively. Subsequently, after the filtration process, these values became 3.48 % and 36.53 % for GTOPO30 and 85.18 % and 47.90 % for SRTM 1. Furthermore, it is found that using a suitable mathematical transformation technique can help increase the precision of classic GDEMs, such as GTOPO30, making them to be equal or more accurate than newer models, such as SRTM 1, which are supported by more advanced technologies. This can help overcome the limitation of shortage of technology or restricted data, particularly in developed countries. Henceforth, the proposed direct transformation technique represents an alternative faster and more economical way to utilize unfiltered measurements of GDEMs to estimate national digital elevations in areas with limited data. Numéro de notice : A2019-283 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jag-2018-0050 date de publication en ligne : 05/03/2019 En ligne : https://doi.org/10.1515/jag-2018-0050 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93118
in Journal of applied geodesy > vol 13 n° 3 (July 2019) . - pp 159 - 177[article]Exploring semantic elements for urban scene recognition: Deep integration of high-resolution imagery and OpenStreetMap (OSM) / Wenzhi Zhao in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
![]()
[article]
Titre : Exploring semantic elements for urban scene recognition: Deep integration of high-resolution imagery and OpenStreetMap (OSM) Type de document : Article/Communication Auteurs : Wenzhi Zhao, Auteur ; Yanchen Bo, Auteur ; Jiage Chen, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 237 - 250 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classe sémantique
[Termes descripteurs IGN] compréhension de l'image
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] reconnaissance d'objets
[Termes descripteurs IGN] scène urbaineRésumé : (Auteur) Urban scenes refer to city blocks which are basic units of megacities, they play an important role in citizens’ welfare and city management. Remote sensing imagery with largescale coverage and accurate target descriptions, has been regarded as an ideal solution for monitoring the urban environment. However, due to the heterogeneity of remote sensing images, it is difficult to access their geographical content at the object level, let alone understanding urban scenes at the block level. Recently, deep learning-based strategies have been applied to interpret urban scenes with remarkable accuracies. However, the deep neural networks require a substantial number of training samples which are hard to satisfy, especially for high-resolution images. Meanwhile, the crowed-sourced Open Street Map (OSM) data provides rich annotation information about the urban targets but may encounter the problem of insufficient sampling (limited by the places where people can go). As a result, the combination of OSM and remote sensing images for efficient urban scene recognition is urgently needed. In this paper, we present a novel strategy to transfer existing OSM data to high-resolution images for semantic element determination and urban scene understanding. To be specific, the object-based convolutional neural network (OCNN) can be utilized for geographical object detection by feeding it rich semantic elements derived from OSM data. Then, geographical objects are further delineated into their functional labels by integrating points of interest (POIs), which contain rich semantic terms, such as commercial or educational labels. Lastly, the categories of urban scenes are easily acquired from the semantic objects inside. Experimental results indicate that the proposed method has an ability to classify complex urban scenes. The classification accuracies of the Beijing dataset are as high as 91% at the object-level and 88% at the scene level. Additionally, we are probably the first to investigate the object level semantic mapping by incorporating high-resolution images and OSM data of urban areas. Consequently, the method presented is effective in delineating urban scenes that could further boost urban environment monitoring and planning with high-resolution images. Numéro de notice : A2019-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.019 date de publication en ligne : 29/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92675
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 237 - 250[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019053 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Learning high-level features by fusing multi-view representation of MLS point clouds for 3D object recognition in road environments / Zhipeng Luo in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
Permalink3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction / Maximilian Brell in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
PermalinkPermalinkDétection et localisation d'objets 3D par apprentissage profond en topologie capteur / Pierre Biasutti (2019)
![]()
PermalinkPermalinkFusion de sets de photos provenant de capteurs différents dans le domaine de l’archéologie / Hugo De Paulis (2019)
PermalinkMéthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier / Benjamin Tardy (2019)
PermalinkMultimodal scene understanding: algorithms, applications and deep learning, ch. 8. Multimodal localization for embedded systems: a survey / Imane Salhi (2019)
PermalinkPermalinkPermalink