Descripteur
Termes descripteurs IGN > 1- Candidats > fusion de données multisource
fusion de données multisource |



Etendre la recherche sur niveau(x) vers le bas
Structure from motion for complex image sets / Mario Michelini in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Structure from motion for complex image sets Type de document : Article/Communication Auteurs : Mario Michelini, Auteur ; Helmut Mayer, Auteur Année de publication : 2020 Article en page(s) : pp 140 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] arbre aléatoire minimum
[Termes descripteurs IGN] chambre de prise de vue numérique
[Termes descripteurs IGN] distorsion d'image
[Termes descripteurs IGN] étalonnage d'instrument
[Termes descripteurs IGN] fusion de données multisource
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] reconstruction 3D
[Termes descripteurs IGN] SIFT (algorithme)
[Termes descripteurs IGN] structure-from-motionRésumé : (auteur) This paper presents an approach for Structure from Motion (SfM) for unorganized complex image sets. To achieve high accuracy and robustness, image triplets are employed and an (approximate) internal camera calibration is assumed to be known. The complexity of an image set is determined by the camera configurations which may include wide as well as weak baselines. Wide baselines occur for instance when terrestrial images and images from small Unmanned Aerial Systems (UAS) are combined. The resulting large (geometric/radiometric) distortions between images make image matching difficult possibly leading to an incomplete result. Weak baselines mean an insufficient distance between cameras compared to the distance of the observed scene and give rise to critical camera configurations. Inappropriate handling of such configurations may lead to various problems in triangulation-based SfM up to total failure. The focus of our approach lies on a complete linking of images even in case of wide or weak baselines. We do not rely on any additional information such as camera configurations, Global Positioning System (GPS) or an Inertial Navigation System (INS). As basis for generating suitable triplets to link the images, an iterative graph-based method is employed formulating image linking as the search for a terminal Steiner minimum tree in the line graph. SIFT (Lowe, 2004) descriptors are embedded into Hamming space for fast image similarity ranking. This is employed to limit the number of pairs to be geometrically verified by a computationally and more complex wide baseline matching method (Mayer et al., 2012). Critical camera configurations which are not suitable for geometric verification are detected by means of classification (Michelini and Mayer, 2019). Additionally, we propose a graph-based approach for the optimization of the hierarchical merging of triplets to efficiently generate larger image subsets. By this means, a complete, 3D reconstruction of the scene is obtained. Experiments demonstrate that the approach is able to produce reliable orientation for large image sets comprising wide as well as weak baseline configurations. Numéro de notice : A2020-355 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.020 date de publication en ligne : 12/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.020 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95242
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 140 - 152[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis / Wenxia Dai in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
![]()
[article]
Titre : Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis Type de document : Article/Communication Auteurs : Wenxia Dai, Auteur ; Bisheng Yang, Auteur ; Xinlian Liang, Auteur ; Zhen Dong, Auteur ; Ronggang Huang, Auteur ; Yunsheng Wang, Auteur ; Wuyan Li, Auteur Année de publication : 2019 Article en page(s) : pp 94 - 107 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] algorithme ICP
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] forêt boréale
[Termes descripteurs IGN] fusion de données multisource
[Termes descripteurs IGN] image ADAR
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] surveillance forestièreRésumé : (Auteur) Airborne laser scanning (ALS) and terrestrial laser scanning (TLS) systems are effective ways to capture the 3D information of forests from complementary perspectives. Registration of the two sources of point clouds is necessary for various forestry applications. Since the forest point clouds show irregular and natural point distributions, standard registration methods working on geometric keypoints (e.g., points, lines, and planes) are likely to fail. Hence, we propose a novel method to register the ALS and TLS forest point clouds through density analysis of the crowns. The proposed method extracts mode-based keypoints by the mean shift method and aligns them by maximum likelihood estimation. Firstly, the differences in the point densities of the ALS and TLS crowns are minimized to produce analogous modes, which represent the local maxima of the underlying probability density function (PDF). The mode-based keypoints are then aligned through the coherent point drift (CPD) algorithm, which is independent of the descriptor similarities and considers the alignment as a maximum likelihood estimation problem. The sets of keypoints derived from the two data sources need not be equal. Finally, the recovered transformation is applied to the original point clouds and refined through the standard iterative closest point (ICP) algorithm. In contrast to some of the existing methods, the proposed method avoids the geometric description of the forest point clouds. Furthermore, additional information such as tree diameter or height is not required to evaluate the similarities. The experiments in this study were conducted in a Scandinavian boreal forest, located in Evo, Finland. The proposed method was tested on four datasets (ALS data: a circle with a diameter of 60 m, multi-scan TLS data: 32 × 32 m) with heterogeneous tree species and structures. The results showed that the proposed probabilistic-based method obtains a good performance with a 3D distance residual of 0.069 m, and improved the accuracy of the registration when compared with the existing methods. Numéro de notice : A2019-318 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : doi.org/10.1016/j.isprsjprs.2019.08.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.08.008 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93356
in ISPRS Journal of photogrammetry and remote sensing > vol 156 (October 2019) . - pp 94 - 107[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019101 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019103 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A CNN-based subpixel level DSM generation approach via single image super-resolution / Yongjun Zhang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)
![]()
[article]
Titre : A CNN-based subpixel level DSM generation approach via single image super-resolution Type de document : Article/Communication Auteurs : Yongjun Zhang, Auteur ; Zhi Zheng, Auteur ; Yimin Luo, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 765 - 775 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] fusion de données multisource
[Termes descripteurs IGN] limite de résolution radiométrique
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] précision infrapixellaire
[Termes descripteurs IGN] reconstruction d'imageRésumé : (Auteur) Previous work for subpixel level Digital Surface Model (DSM) generation mainly focused on data fusion techniques, which are extremely limited by the difficulty of multisource data acquisition. Although several DSM super resolution (SR) methods have been developed to ease the problem, a new issue that plenty of DSM samples are needed to train the model is raised. Therefore, considering the original images have vital influence on its DSM's accuracy, we address the problem by directly improving images resolution. Several SR models are refined and brought into the traditional DSM generation process as an image quality improvement stage to construct an easy but effective workflow for subpixel level DSM generation. Experiments verified the validity and significance of bringing SR technology into this kind of application. Statistical analysis also confirmed that a subpixel level DSM with higher fidelity can be obtained more easily compared to directly DSM interpolation. Numéro de notice : A2019-524 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.10.765 date de publication en ligne : 01/10/2019 En ligne : https://doi.org/10.14358/PERS.85.10.765 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93997
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 10 (October 2019) . - pp 765 - 775[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019101 SL Revue Centre de documentation Revues en salle Disponible Multimodal scene understanding: algorithms, applications and deep learning, ch. 11. Decision fusion of remote-sensing data for land cover classification / Arnaud Le Bris (2019)
![]()
Titre de série : Multimodal scene understanding: algorithms, applications and deep learning, ch. 11 Titre : Decision fusion of remote-sensing data for land cover classification Type de document : Chapitre/Contribution Auteurs : Arnaud Le Bris , Auteur ; Nesrine Chehata
, Auteur ; Walid Ouerghemmi
, Auteur ; Cyril Wendl, Auteur ; Tristan Postadjian
, Auteur ; Anne Puissant, Auteur ; Clément Mallet
, Auteur
Editeur : Londres, New York : Academic Press Année de publication : 2019 Importance : pp 341 - 382 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] fusion de données multisource
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image SPOT 6
[Termes descripteurs IGN] image SPOT 7
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] zone urbaineRésumé : (Auteur) Very high spatial resolution (VHR) multispectral imagery enables a fine delineation of objects and a possible use of texture information. Other sensors provide a lower spatial resolution but an enhanced spectral or temporal information, permitting one to consider richer land cover semantics. So as to benefit from the complementary characteristics of these multimodal sources, a decision late fusion scheme is proposed. This makes it possible to benefit from the full capacities of each sensor, while dealing with both semantic and spatial uncertainties. The different remote-sensing modalities are first classified independently. Separate class membership maps are calculated and then merged at the pixel level, using decision fusion rules. A final label map is obtained from a global regularization scheme in order to deal with spatial uncertainties while conserving the contrasts from the initial images. It relies on a probabilistic graphical model involving a fit-to-data term related to merged class membership measures and an image-based contrast-sensitive regularization term. Conflict between sources can also be integrated into this scheme. Two experimental cases are presented. In the first case one considers the fusion of VHR multispectral imagery with lower spatial resolution hyperspectral imagery for fine-grained land cover classification problem in dense urban areas. In the second case one uses SPOT 6/7 satellite imagery and Sentinel-2 time series to extract urban area footprints through a two-step process: classifications are first merged in order to detect building objects, from which a urban area prior probability is derived and eventually merged to Sentinel-2 classification output for urban footprint detection. Numéro de notice : H2019-002 Affiliation des auteurs : LaSTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Chapître / contribution nature-HAL : ChOuvrScient DOI : 10.1016/B978-0-12-817358-9.00017-2 date de publication en ligne : 02/08/2019 En ligne : https://doi.org/10.1016/B978-0-12-817358-9.00017-2 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93303 A TV prior for high-quality scalable multi-view stereo reconstruction / Andreas Kuhn in International journal of computer vision, vol 124 n° 1 (August 2017)
![]()
[article]
Titre : A TV prior for high-quality scalable multi-view stereo reconstruction Type de document : Article/Communication Auteurs : Andreas Kuhn, Auteur ; Heiko Hirschmüller, Auteur ; Daniel Scharstein, Auteur ; Helmut Mayer, Auteur Année de publication : 2017 Article en page(s) : pp 2 – 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image numérique
[Termes descripteurs IGN] erreur
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] fusion de données multisource
[Termes descripteurs IGN] modèle stéréoscopique
[Termes descripteurs IGN] reconstruction 3D
[Termes descripteurs IGN] visibilité
[Termes descripteurs IGN] voxelRésumé : (auteur) We present a scalable multi-view stereo method able to reconstruct accurate 3D models from hundreds of high-resolution input images. Local fusion of disparity maps obtained with semi-global matching enables the reconstruction of large scenes that do not fit into main memory. Since disparity maps may vary widely in quality and resolution, careful modeling of the 3D errors is crucial. We derive a sound stereo error model based on disparity uncertainty, which can vary spatially from tenths to several pixels. We introduce a feature based on total variation that allows pixel-wise classification of disparities into different error classes. For each class, we learn a disparity error distribution from ground-truth data using expectation maximization. We present a novel method for stochastic fusion of data with varying quality by adapting a multi-resolution volumetric fusion process that uses our error classes as a prior and models surface probabilities via an octree of voxels. Conflicts during surface extraction are resolved using visibility constraints and preference for voxels at higher resolutions. Experimental results on several challenging large-scale datasets demonstrate that our method yields improved performance both qualitatively and quantitatively. Numéro de notice : A2017-397 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article En ligne : https://doi.org/10.1007/s11263-016-0946-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85934
in International journal of computer vision > vol 124 n° 1 (August 2017) . - pp 2 – 17[article]Contributions méthodologiques pour la caractérisation des milieux par imagerie optique et lidar / Nesrine Chehata (2017)
![]()
PermalinkFusion of graph embedding and sparse representation for feature extraction and classification of hyperspectral imagery / Fulin Luo in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 1 (January 2017)
PermalinkAn integrated framework for the spatio–temporal–spectral fusion of remote sensing images / Huanfeng Shen in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)
PermalinkOn the impact of airborne gravity data to fused gravity field models / Dimitrios Bolkas in Journal of geodesy, vol 90 n° 6 (June 2016)
PermalinkMapping nocturnal light pollution / Jordi Corbera in GIM international [en ligne], vol 29 n° 11 (November 2015)
PermalinkRegistration of aerial imagery and lidar data in desert areas using sand ridges / Na Li in Photogrammetric record, vol 30 n° 151 (September - November 2015)
PermalinkReconstruction de modèles 3D photoréalistes de façades à partir de données image et laser terrestre / Jérôme Demantké (2014)
Permalink3D range scan enhancement using image-based methods / Steffen Herbort in ISPRS Journal of photogrammetry and remote sensing, vol 84 (October 2013)
PermalinkObject-based fusion of multitemporal multiangle ENVISAT ASAR and HJ-1B multispectral data for urban land-cover mapping / Yifang Ban in IEEE Transactions on geoscience and remote sensing, vol 51 n° 4 Tome 1 (April 2013)
PermalinkA quality prediction method for building model reconstruction using LiDAR data and topographic maps / R. You in IEEE Transactions on geoscience and remote sensing, vol 49 n° 9 (September 2011)
Permalink