Descripteur



Etendre la recherche sur niveau(x) vers le bas
A heuristic approach to the generalization of complex building groups in urban villages / Wenhao Yu in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : A heuristic approach to the generalization of complex building groups in urban villages Type de document : Article/Communication Auteurs : Wenhao Yu, Auteur ; Qi Zhou, Auteur ; Rong Zhao, Auteur Année de publication : 2021 Article en page(s) : pp 155 - 179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] généralisation du bâti
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] représentation multiple
[Termes descripteurs IGN] triangulation de Delaunay
[Termes descripteurs IGN] zone urbaine
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The generalization of building footprints acts as the basis of multi-scale mapping. Most of the previous studies focus on the generalization of regular building clusters within a wide neighbourhood, but only few has concerned about the generalization of cluttered building clusters within the narrow space such as urban village. The buildings in urban villages show special characteristics in terms of individual properties and group properties, and thus their map generalization processes are often limited. This study proposes a framework to generalize the cluttered building clusters that allows for multi-scale mapping. It first adopts a heuristic method to group adjacent buildings based on the Delaunay triangulation model and then aggregates and simplifies each building group separately. Given that the aggregated buildings in urban villages often show cluttered alignments, our method further trims the jagged boundaries of building footprints by extracting the gap space between neighbouring buildings from the Delaunay triangulation model. Numéro de notice : A2021-084 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.159046 date de publication en ligne : 25/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1590463 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96843
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 155 - 179[article]Recognition of building group patterns using graph convolutional network / Rong Zhao in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
![]()
[article]
Titre : Recognition of building group patterns using graph convolutional network Type de document : Article/Communication Auteurs : Rong Zhao, Auteur ; Tinghua Ai, Auteur ; Wenhao Yu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 400 - 417 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données topographiques
[Termes descripteurs IGN] espace urbain
[Termes descripteurs IGN] généralisation du bâti
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] modélisation du bâti
[Termes descripteurs IGN] reconnaissance de formesRésumé : (auteur) Recognition of building group patterns is of great significance for understanding and modeling the urban space. However, many current methods cannot fully utilize spatial information and have trouble efficiently dealing with topographic data with high complexity. The design of intelligent computational models that can act directly on topographic data to extract spatial features is critical. To this end, we propose a novel deep neural network based on graph convolutions to automatically identify building group patterns with arbitrary forms. The method first models buildings by a general graph, and then the neural network simultaneously learns the structural information as well as vertex attributes to classify building objects. We apply this method to real building data, and the experimental results show that the proposed method can effectively capture spatial information to make more accurate predictions than traditional methods. Numéro de notice : A2020-510 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1757512 date de publication en ligne : 12/06/2020 En ligne : https://doi.org/10.1080/15230406.2020.1757512 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95663
in Cartography and Geographic Information Science > Vol 47 n° 5 (September 2020) . - pp 400 - 417[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020051 SL Revue Centre de documentation Revues en salle Disponible Recognizing building groups for generalization : a comparative study / Min Deng in Cartography and Geographic Information Science, Vol 45 n° 3 (May 2018)
![]()
[article]
Titre : Recognizing building groups for generalization : a comparative study Type de document : Article/Communication Auteurs : Min Deng, Auteur ; Jianbo Tang, Auteur ; Qiliang Liu, Auteur ; Fang Wu, Auteur Année de publication : 2018 Article en page(s) : pp 187 - 204 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] algorithme de généralisation
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] contrainte géométrique
[Termes descripteurs IGN] généralisation cartographique automatisée
[Termes descripteurs IGN] généralisation du bâti
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Recognition of building groups is a critical step in building generalization. To find building groups, various approaches have been developed based on the principles of grouping (or the Gestalt laws of grouping), and the effectiveness of these approaches needs to be evaluated. This study presents a comparative analysis of nine typical such approaches, including three approaches that only consider proximity principle and six approaches that consider multiple grouping principles. Real-life dataset at 1:5000, 1:10,000, and 1:50,000 scales provided by National Geomatics Center of China is used to evaluate the performance of these approaches. Buildings at smaller scales are used to construct the benchmarks to test the grouping results at larger scales, and the adjusted Rand index is adopted to indicate the accuracy of the detected groups. Significant tests (Friedman test and Wilcoxon signed-rank test) are also performed to provide both the overall and pairwise comparisons of these approaches. The results show that (1) the average accuracy of most existing approaches is between 0.3 and 0.5, and the performances of these approaches are significantly different; (2) when only proximity is considered, the buffer analysis approach performs significantly better than other approaches; (3) when multiple grouping principles are considered, the local constraint-based approach usually performs better than other approaches; (4) existing approaches that consider similarity and/or continuity seldom improve the performance of building grouping. Numéro de notice : A2018-129 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2017.1302821 date de publication en ligne : 24/03/2017 En ligne : https://doi.org/10.1080/15230406.2017.1302821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89657
in Cartography and Geographic Information Science > Vol 45 n° 3 (May 2018) . - pp 187 - 204[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2018031 SL Revue Centre de documentation Revues en salle Disponible Progressive amalgamation of building clusters for map generalization based on scaling subgroups / Xianjin He in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
![]()
[article]
Titre : Progressive amalgamation of building clusters for map generalization based on scaling subgroups Type de document : Article/Communication Auteurs : Xianjin He, Auteur ; Xinchang Zhang, Auteur ; Jie Yang, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] généralisation du bâti
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] représentation multiple
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Map generalization utilizes transformation operations to derive smaller-scale maps from larger-scale maps, and is a key procedure for the modelling and understanding of geographic space. Studies to date have largely applied a fixed tolerance to aggregate clustered buildings into a single object, resulting in the loss of details that meet cartographic constraints and may be of importance for users. This study aims to develop a method that amalgamates clustered buildings gradually without significant modification of geometry, while preserving the map details as much as possible under cartographic constraints. The amalgamation process consists of three key steps. First, individual buildings are grouped into distinct clusters by using the graph-based spatial clustering application with random forest (GSCARF) method. Second, building clusters are decomposed into scaling subgroups according to homogeneity with regard to the mean distance of subgroups. Thus, hierarchies of building clusters can be derived based on scaling subgroups. Finally, an amalgamation operation is progressively performed from the bottom-level subgroups to the top-level subgroups using the maximum distance of each subgroup as the amalgamating tolerance instead of using a fixed tolerance. As a consequence of this step, generalized intermediate scaling results are available, which can form the multi-scale representation of buildings. The experimental results show that the proposed method can generate amalgams with correct details, statistical area balance and orthogonal shape while satisfying cartographic constraints (e.g., minimum distance and minimum area). Numéro de notice : A2018-102 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030116 En ligne : https://doi.org/10.3390/ijgi7030116 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89517
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]A typification method for linear pattern in urban building generalisation / Xianyong Gong in Geocarto international, vol 33 n° 2 (February 2018)
![]()
[article]
Titre : A typification method for linear pattern in urban building generalisation Type de document : Article/Communication Auteurs : Xianyong Gong, Auteur ; Fang Wu, Auteur Année de publication : 2018 Article en page(s) : pp 189 - 207 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] généralisation cartographique automatisée
[Termes descripteurs IGN] généralisation du bâti
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] modèle linéaire
[Termes descripteurs IGN] reconnaissance de formes
[Termes descripteurs IGN] triangulation de Delaunay
[Termes descripteurs IGN] typification
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) This paper presents a typification method for linear pattern in urban building generalization. The proposed method includes two processes. Firstly, structural knowledge in terms of linear pattern is detected using a two-step algorithm taking the advantages of Gestalt visual perception, computational geometry and graph theory. Spatial neighbourhood is captured using interpolated constrained Delaunay triangulation and the resulting proximity graph is pruned to be heterogeneous to get acceptable linear patterns with regard to Gestalt visual perception. Then, a typification strategy is proposed, in which typification is regarded as a progressive and iterative process consisting of elimination, exaggeration and displacement. The typification strategy iteratively executes eliminating the building with minimum overall effect, exaggerating remaining buildings considering key location and spatial characteristics and displacing them to preserve the linear pattern until elimination quantity is satisfied. Experiments show that this proposed strategy is effective and linear patterns are guaranteed with correctness and completeness. Numéro de notice : A2018-034 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1240718 En ligne : https://doi.org/10.1080/10106049.2016.1240718 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89207
in Geocarto international > vol 33 n° 2 (February 2018) . - pp 189 - 207[article]Progressive block graying and landmarks enhancing as intermediate representations between buildings and urban areas / Guillaume Touya (2017)
PermalinkRepresentation and discovery of building patterns: a three-level relational approach / Shihong Du in International journal of geographical information science IJGIS, vol 30 n° 5-6 (May - June 2016)
PermalinkA vector field model to handle the displacement of multiple conflicts in building generalization / Tinghua Ai in International journal of geographical information science IJGIS, vol 29 n° 8 (August 2015)
PermalinkPermalinkA geometry and texture coupled flexible generalization of urban building models / M. Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 70 (June 2012)
PermalinkMulti-criteria diagnosis of control knowledge for cartographic generalisation / Patrick Taillandier in European journal of operational research, vol 217 n° 3 ([01/03/2012])
PermalinkUtilising urban context recognition and machine learning to improve the generalisation of buildings / Stefan Steiniger in International journal of geographical information science IJGIS, vol 24 n°1-2 (january 2010)
PermalinkA structure recognition technique in contextual generalisation of buildings and built-up areas / Melih Basaraner in Cartographic journal (the), vol 45 n° 4 (November 2008)
PermalinkA multi-parameter approach to automated building grouping and generalization / Hongxiang Yan in Geoinformatica, vol 12 n° 1 (March - May 2008)
PermalinkAutomatic amalgation of buildings for producing Ordnance Survey 1: 50000 scale maps / Nicolas Regnauld in Cartographic journal (the), vol 44 n° 3 (August 2007)
Permalink