Descripteur
Documents disponibles dans cette catégorie (28)



Etendre la recherche sur niveau(x) vers le bas
Correlation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets / Li Geng in ISPRS International journal of geo-information, vol 12 n° 1 (January 2023)
![]()
[article]
Titre : Correlation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets Type de document : Article/Communication Auteurs : Li Geng, Auteur ; Ke Zhang, Auteur Année de publication : 2023 Article en page(s) : n° 7 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] géobalise
[Termes IGN] mobilité urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routier
[Termes IGN] TwitterRésumé : (auteur) Urban planners have been long interested in understanding how urban structure and activities are mutually influenced. Human mobility and economic activities naturally drive the formation of road network structure and the accessibility of the latter shapes the patterns of movement flow across urban space. In this paper, we perform an exploratory study on the relationship between the street network structure and the intensity of human movement in urban areas. We focus on two cities and we utilize a dataset of geo-tagged tweets that can form a proxy to urban mobility and the corresponding street networks as obtained from OpenStreetMap. We apply three network centrality measures, including closeness, betweenness and straightness centrality, calculated at a global or local scale, as well as under mixed or individual transportation mode (e.g., driving, biking and walking) with its directional accessibility, to uncover the structural properties of urban street networks. We further design an urban area transition network and apply PageRank to capture the intensity of human mobility. Our correlation analysis indicates different centrality metrics have different levels of correlation with the intensity of human movement. The closeness centrality consistently shows the highest correlation (with a coefficient around 0.6) with human movement intensity when calculated at a global scale, while straightness centrality often shows no correlation at the global scale or weaker correlation ρ≈0.4 at the local scale. The correlation levels further depend on the type of directional accessibility and of various types of transportation modes. Hence, the directionality and transportation mode, largely ignored in the analysis of road networks, are crucial. Furthermore, the strength of the correlation varies in the two cities examined, indicating potential differences in urban spatial structure and human mobility patterns. Numéro de notice : A2023-105 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.3390/ijgi12010007 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.3390/ijgi12010007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102433
in ISPRS International journal of geo-information > vol 12 n° 1 (January 2023) . - n° 7[article]An analysis of twitter as a relevant human mobility proxy / Fernando Terroso-Saenz in Geoinformatica, vol 26 n° 4 (October 2022)
![]()
[article]
Titre : An analysis of twitter as a relevant human mobility proxy Type de document : Article/Communication Auteurs : Fernando Terroso-Saenz, Auteur ; Andres Muñoz, Auteur ; Francisco Arcas, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 677 - 706 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] Espagne
[Termes IGN] géobalise
[Termes IGN] maladie virale
[Termes IGN] mobilité territoriale
[Termes IGN] TwitterRésumé : (auteur) During the last years, the analysis of spatio-temporal data extracted from Online Social Networks (OSNs) has become a prominent course of action within the human-mobility mining discipline. Due to the noisy and sparse nature of these data, an important effort has been done on validating these platforms as suitable mobility proxies. However, such a validation has been usually based on the computation of certain features from the raw spatio-temporal trajectories extracted from OSN documents. Hence, there is a scarcity of validation studies that evaluate whether geo-tagged OSN data are able to measure the evolution of the mobility in a region at multiple spatial scales. For that reason, this work proposes a comprehensive comparison of a nation-scale Twitter (TWT) dataset and an official mobility survey from the Spanish National Institute of Statistics. The target time period covers a three-month interval during which Spain was heavily affected by the COVID-19 pandemic. Both feeds have been compared in this context by considering different mobility-related features and spatial scales. The results show that TWT could capture only a limited number features of the latent mobility behaviour of Spain during the study period. Numéro de notice : A2022-866 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00460-z Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1007/s10707-021-00460-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102159
in Geoinformatica > vol 26 n° 4 (October 2022) . - pp 677 - 706[article]Discovering transition patterns among OpenStreetMap feature classes based on the Louvain method / Yijiang Zhao in Transactions in GIS, vol 26 n° 1 (February 2022)
![]()
[article]
Titre : Discovering transition patterns among OpenStreetMap feature classes based on the Louvain method Type de document : Article/Communication Auteurs : Yijiang Zhao, Auteur ; Wentao Yang, Auteur ; Yizhi Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 236 - 258 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] Açores, archipel des
[Termes IGN] algorithme glouton
[Termes IGN] données localisées des bénévoles
[Termes IGN] étiquette
[Termes IGN] géobalise
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routierRésumé : (auteur) Numerous studies have shown that OpenStreetMap (OSM) data can achieve high positional quality. However, the thematic attributes of OSM objects can be modified several times, which has a large impact on semantic heterogeneity. Identifying transition patterns within OSM feature classes is an important preliminary step for the tag recommendation algorithm, which can reduce the number of modifications and enhance the efficiency of OSM data updates. In this article, we propose an approach for discovering transition patterns among OSM feature classes. We first produced the transition matrix of feature classes and then developed a graph. Next, the Louvain method for community detection was utilized to cluster the feature classes. OSM data from Indiana, USA, and the Azores, Portugal, were used for our experiments. Some transition patterns were discovered: (1) many feature classes with the most transitions are the same in both datasets and most transitions occur in road-related feature classes; (2) people tend to tag general classes if they are unsure of the specific classes of tagged objects; and (3) most class transitions occurred as a result of volunteers improving the specificity and precision of feature classes. Moreover, consistently confusing concept pairs were identified. Numéro de notice : A2022-178 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12843 Date de publication en ligne : 08/10/2021 En ligne : https://doi.org/10.1111/tgis.12843 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99835
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 236 - 258[article]GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules / Xuke Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules Type de document : Article/Communication Auteurs : Xuke Hu, Auteur ; Hussein S. Al-Olimat, Auteur ; Jens Kersten, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 310 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] classification hybride
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données topographiques
[Termes IGN] extraction de données
[Termes IGN] géobalise
[Termes IGN] microblogue
[Termes IGN] OpenStreetMap
[Termes IGN] répertoire toponymique
[Termes IGN] toponyme
[Termes IGN] TwitterRésumé : (auteur) Extracting precise location information from microblogs is a crucial task in many applications, particularly in disaster response, revealing where damages are, where people need assistance, and where help can be found. A crucial prerequisite to location extraction is place name extraction. In this paper, we present GazPNE: a hybrid approach to place name extraction which fuses rules, gazetteers, and deep learning techniques without requiring any manually annotated data. The core of the approach is to learn the intrinsic characteristics of multi-word place names with deep learning from gazetteers. Specifically, GazPNE consists of a rule-based system to select n-grams from the microblogs that potentially contain place names, and a C-LSTM model that decides if the selected n-gram is a place name or not. The C-LSTM is trained on 388.1 million examples containing 6.8 million positive examples with US and Indian place names extracted from OpenStreetMap and 381.3 million negative examples synthesized by rules. We evaluate GazPNE against the SoTA on a manually annotated 4,500 tweet dataset which contains 9,026 place names from three foods: 2016 in Louisiana (US), 2016 in Houston (US), and 2015 in Chennai (India). GazPNE achieves SotA performance on the test data with an F1 of 0.84. Numéro de notice : A2022-164 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1947507 Date de publication en ligne : 07/07/2021 En ligne : https://doi.org/10.1080/13658816.2021.1947507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99787
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 310 - 337[article]Exploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
![]()
[article]
Titre : Exploring the heterogeneity of human urban movements using geo-tagged tweets Type de document : Article/Communication Auteurs : Ding Ma, Auteur ; Toshihiro Osaragi, Auteur ; Takuya Oki, Auteur ; Bin Jiang, Auteur Année de publication : 2020 Article en page(s) : pp 2475 -2 496 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] espace urbain
[Termes IGN] flux de données
[Termes IGN] géobalise
[Termes IGN] géolocalisation
[Termes IGN] hétérogénéité
[Termes IGN] Londres
[Termes IGN] migration humaine
[Termes IGN] modèle de simulation
[Termes IGN] modèle orienté agent
[Termes IGN] population urbaine
[Termes IGN] Tokyo (Japon)
[Termes IGN] TwitterRésumé : (auteur) The availability of vast amounts of location-based data from social media platforms such as Twitter has enabled us to look deeply into the dynamics of human movement. The aim of this paper is to leverage a large collection of geo-tagged tweets and the street networks of two major metropolitan areas—London and Tokyo—to explore the underlying mechanism that determines the heterogeneity of human mobility patterns. For the two target cities, hundreds of thousands of tweet locations and road segments were processed to generate city hotspots and natural streets. User movement trajectories and city hotspots were then used to build a hotspot network capable of quantitatively characterizing the heterogeneous movement patterns of people within the cities. To emulate observed movement patterns, the study conducts a two-level agent-based simulation that includes random walks through the hotspot networks and movements in the street networks using each of three distance types—metric, angular and combined. Comparisons of the simulated and observed movement flows at the segment and street levels show that the heterogeneity of human urban movements at the collective level is mainly shaped by the scaling structure of the urban space. Numéro de notice : A2020-692 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1718153 Date de publication en ligne : 24/01/2020 En ligne : https://doi.org/10.1080/13658816.2020.1718153 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96233
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2475 -2 496[article]GeoNat v1.0: A dataset for natural feature mapping with artificial intelligence and supervised learning / Samantha T. Arundel in Transactions in GIS, Vol 24 n° 3 (June 2020)
PermalinkUnderstanding demographic and socioeconomic biases of geotagged Twitter users at the county level / Jiang Juqin in Cartography and Geographic Information Science, vol 46 n° 3 (May 2019)
PermalinkA hybrid ensemble learning method for tourist route recommendations based on geo-tagged social networks / Lin Wan in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)
PermalinkExploring geo-tagged photos for land cover validation with deep learning / Hanfa Xing in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
PermalinkA framework for annotating OpenStreetMap objects using geo-tagged tweets / Xin Chen in Geoinformatica, vol 22 n° 3 (July 2018)
PermalinkInformation extraction and visualization from twitter considering spatial structure / Hideyuki Fujita in Cartographica, vol 52 n° 2 (Summer 2017)
PermalinkDemand and supply of cultural ecosystem services: Use of geotagged photos to map the aesthetic value of landscapes in Hokkaido / Nobuhiko Yoshimura in Ecosystem Services, vol 24 (April 2017)
PermalinkCrowdsourcing functions of the living city from Twitter and Foursquare data / Xiaolu Zhou in Cartography and Geographic Information Science, vol 43 n° 5 (November 2016)
PermalinkBumps and bruises in the digital skins of cities: unevenly distributed user-generated content across US urban areas / Colin Robertson in Cartography and Geographic Information Science, Vol 43 n° 4 (September 2016)
PermalinkPosition validation in crowdsourced accessibility mapping / Rebecca M. Rice in Cartographica, vol 51 n° 2 (Summer 2016)
Permalink