Descripteur



Etendre la recherche sur niveau(x) vers le bas
Exploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
![]()
[article]
Titre : Exploring the heterogeneity of human urban movements using geo-tagged tweets Type de document : Article/Communication Auteurs : Ding Ma, Auteur ; Toshihiro Osaragi, Auteur ; Takuya Oki, Auteur ; Bin Jiang, Auteur Année de publication : 2020 Article en page(s) : pp 2475 -2 496 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] espace urbain
[Termes descripteurs IGN] flux de données
[Termes descripteurs IGN] géoétiquetage
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] hétérogénéité
[Termes descripteurs IGN] Londres
[Termes descripteurs IGN] migration humaine
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle orienté agent
[Termes descripteurs IGN] population urbaine
[Termes descripteurs IGN] Tokyo (Japon)
[Termes descripteurs IGN] TwitterRésumé : (auteur) The availability of vast amounts of location-based data from social media platforms such as Twitter has enabled us to look deeply into the dynamics of human movement. The aim of this paper is to leverage a large collection of geo-tagged tweets and the street networks of two major metropolitan areas—London and Tokyo—to explore the underlying mechanism that determines the heterogeneity of human mobility patterns. For the two target cities, hundreds of thousands of tweet locations and road segments were processed to generate city hotspots and natural streets. User movement trajectories and city hotspots were then used to build a hotspot network capable of quantitatively characterizing the heterogeneous movement patterns of people within the cities. To emulate observed movement patterns, the study conducts a two-level agent-based simulation that includes random walks through the hotspot networks and movements in the street networks using each of three distance types—metric, angular and combined. Comparisons of the simulated and observed movement flows at the segment and street levels show that the heterogeneity of human urban movements at the collective level is mainly shaped by the scaling structure of the urban space. Numéro de notice : A2020-692 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1718153 date de publication en ligne : 24/01/2020 En ligne : https://doi.org/10.1080/13658816.2020.1718153 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96233
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2475 -2 496[article]GeoNat v1.0: A dataset for natural feature mapping with artificial intelligence and supervised learning / Samantha T. Arundel in Transactions in GIS, Vol 24 n° 3 (June 2020)
![]()
[article]
Titre : GeoNat v1.0: A dataset for natural feature mapping with artificial intelligence and supervised learning Type de document : Article/Communication Auteurs : Samantha T. Arundel, Auteur ; Wenwen Li, Auteur ; Sizhe Wang, Auteur Année de publication : 2020 Article en page(s) : pp 556 - 572 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] cartographie topographique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] collecte de données
[Termes descripteurs IGN] détection automatique
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] géoétiquetage
[Termes descripteurs IGN] toponyme
[Termes descripteurs IGN] United States Geological SurveyRésumé : (Auteur) Machine learning allows “the machine” to deduce the complex and sometimes unrecognized rules governing spatial systems, particularly topographic mapping, by exposing it to the end product. Often, the obstacle to this approach is the acquisition of many good and labeled training examples of the desired result. Such is the case with most types of natural features. To address such limitations, this research introduces GeoNat v1.0, a natural feature dataset, used to support artificial intelligence‐based mapping and automated detection of natural features under a supervised learning paradigm. The dataset was created by randomly selecting points from the U.S. Geological Survey’s Geographic Names Information System and includes approximately 200 examples each of 10 classes of natural features. Resulting data were tested in an object‐detection problem using a region‐based convolutional neural network. The object‐detection tests resulted in a 62% mean average precision as baseline results. Major challenges in developing training data in the geospatial domain, such as scale and geographical representativeness, are addressed in this article. We hope that the resulting dataset will be useful for a variety of applications and shed light on training data collection and labeling in the geospatial artificial intelligence domain. Numéro de notice : A2020-245 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12633 date de publication en ligne : 08/05/2020 En ligne : https://doi.org/10.1111/tgis.12633 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95307
in Transactions in GIS > Vol 24 n° 3 (June 2020) . - pp 556 - 572[article]Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level / Jiang Juqin in Cartography and Geographic Information Science, vol 46 n° 3 (May 2019)
![]()
[article]
Titre : Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level Type de document : Article/Communication Auteurs : Jiang Juqin, Auteur ; Li Zhenlong, Auteur ; Xinyue Ye, Auteur Année de publication : 2019 Article en page(s) : pp 228 - 242 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] agrégation spatiale
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] données démographiques
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] géoétiquetage
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] TwitterRésumé : (Auteur) Massive social media data produced from microblog platforms provide a new data source for studying human dynamics at an unprecedented scale. Meanwhile, population bias in geotagged Twitter users is widely recognized. Understanding the demographic and socioeconomic biases of Twitter users is critical for making reliable inferences on the attitudes and behaviors of the population. However, the existing global models cannot capture the regional variations of the demographic and socioeconomic biases. To bridge the gap, we modeled the relationships between different demographic/socioeconomic factors and geotagged Twitter users for the whole contiguous United States, aiming to understand how the demographic and socioeconomic factors relate to the number of Twitter users at county level. To effectively identify the local Twitter users for each county of the United States, we integrate three commonly used methods and develop a query approach in a high-performance computing environment. The results demonstrate that we can not only identify how the demographic and socioeconomic factors relate to the number of Twitter users, but can also measure and map how the influence of these factors vary across counties. Numéro de notice : A2019-093 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2018.1434834 date de publication en ligne : 09/02/2018 En ligne : https://doi.org/10.1080/15230406.2018.1434834 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92338
in Cartography and Geographic Information Science > vol 46 n° 3 (May 2019) . - pp 228 - 242[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2019031 SL Revue Centre de documentation Revues en salle Disponible Exploring geo-tagged photos for land cover validation with deep learning / Hanfa Xing in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
![]()
[article]
Titre : Exploring geo-tagged photos for land cover validation with deep learning Type de document : Article/Communication Auteurs : Hanfa Xing, Auteur ; Yuan Meng, Auteur ; Zixuan Wang, Auteur ; Kaixuan Fan, Auteur ; Dongyang Hou, Auteur Année de publication : 2018 Article en page(s) : pp 237 - 251 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] base de données d'occupation du sol
[Termes descripteurs IGN] Californie (Etats-Unis)
[Termes descripteurs IGN] échantillon
[Termes descripteurs IGN] estimation de précision
[Termes descripteurs IGN] géoétiquetage
[Termes descripteurs IGN] image numérique
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] production participative
[Termes descripteurs IGN] réseau neuronal convolutifRésumé : (Auteur) Land cover validation plays an important role in the process of generating and distributing land cover thematic maps, which is usually implemented by high cost of sample interpretation with remotely sensed images or field survey. With an increasing availability of geo-tagged landscape photos, the automatic photo recognition methodologies, e.g., deep learning, can be effectively utilised for land cover applications. However, they have hardly been utilised in validation processes, as challenges remain in sample selection and classification for highly heterogeneous photos. This study proposed an approach to employ geo-tagged photos for land cover validation by using the deep learning technology. The approach first identified photos automatically based on the VGG-16 network. Then, samples for validation were selected and further classified by considering photos distribution and classification probabilities. The implementations were conducted for the validation of the GlobeLand30 land cover product in a heterogeneous area, western California. Experimental results represented promises in land cover validation, given that GlobeLand30 showed an overall accuracy of 83.80% with classified samples, which was close to the validation result of 80.45% based on visual interpretation. Additionally, the performances of deep learning based on ResNet-50 and AlexNet were also quantified, revealing no substantial differences in final validation results. The proposed approach ensures geo-tagged photo quality, and supports the sample classification strategy by considering photo distribution, with accuracy improvement from 72.07% to 79.33% compared with solely considering the single nearest photo. Consequently, the presented approach proves the feasibility of deep learning technology on land cover information identification of geo-tagged photos, and has a great potential to support and improve the efficiency of land cover validation. Numéro de notice : A2018-289 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.04.025 date de publication en ligne : 16/05/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.04.025 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90404
in ISPRS Journal of photogrammetry and remote sensing > vol 141 (July 2018) . - pp 237 - 251[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018071 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018073 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2018072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A framework for annotating OpenStreetMap objects using geo-tagged tweets / Xin Chen in Geoinformatica [en ligne], vol 22 n° 3 (July 2018)
![]()
[article]
Titre : A framework for annotating OpenStreetMap objects using geo-tagged tweets Type de document : Article/Communication Auteurs : Xin Chen, Auteur ; Hoang Vo, Auteur ; Yu Wang, Auteur ; Fusheng Wang, Auteur Année de publication : 2018 Article en page(s) : pp 589 - 613 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes descripteurs IGN] corpus
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] enrichissement sémantique
[Termes descripteurs IGN] géoétiquetage
[Termes descripteurs IGN] intégration de données
[Termes descripteurs IGN] objet géographique
[Termes descripteurs IGN] OpenStreetMap
[Termes descripteurs IGN] TwitterRésumé : (Auteur) Recent years have witnessed an explosion of geospatial data, especially in the form of Volunteered Geographic Information (VGI). As a prominent example, OpenStreetMap (OSM) creates a free editable map of the world from a large number of contributors. On the other hand, social media platforms such as Twitter or Instagram supply dynamic social feeds at population level. As much of such data is geo-tagged, there is a high potential on integrating social media with OSM to enrich OSM with semantic annotations, which will complement existing objective description oriented annotations to provide a broader range of annotations. In this paper, we propose a comprehensive framework on integrating social media data and VGI data to derive knowledge about geographical objects, specifically, top relevant annotations from tweets for objects in OSM. We first integrate geo-tagged tweets with OSM data with scalable spatial queries running on MapReduce. We propose a frequency based method for annotating boundary based geographic objects (a polygon), and a probability based method for annotating point based geographic objects (Latitude and Longitude), with consideration of noise. We evaluate our methods using a large geo-tagged tweets corpus and representative geographic objects from OSM, which demonstrates promising results through ground-truth comparison and case studies. We are able to produce up to 80% correct names for geographical objects and discover implicitly relevant information, such as popular exhibitions of a museum, the nicknames or visitors’ impression to a tourism attraction. Numéro de notice : A2018-369 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-018-0323-8 date de publication en ligne : 20/06/2018 En ligne : https://doi.org/10.1007/s10707-018-0323-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90760
in Geoinformatica [en ligne] > vol 22 n° 3 (July 2018) . - pp 589 - 613[article]Information extraction and visualization from twitter considering spatial structure / Hideyuki Fujita in Cartographica, vol 52 n° 2 (Summer 2017)
PermalinkDemand and supply of cultural ecosystem services: Use of geotagged photos to map the aesthetic value of landscapes in Hokkaido / Nobuhiko Yoshimura in Ecosystem Services, vol 24 (April 2017)
PermalinkCrowdsourcing functions of the living city from Twitter and Foursquare data / Xiaolu Zhou in Cartography and Geographic Information Science, vol 43 n° 5 (November 2016)
PermalinkBumps and bruises in the digital skins of cities: unevenly distributed user-generated content across US urban areas / Colin Robertson in Cartography and Geographic Information Science, Vol 43 n° 4 (September 2016)
PermalinkPosition validation in crowdsourced accessibility mapping / Rebecca M. Rice in Cartographica, vol 51 n° 2 (Summer 2016)
PermalinkToponym recognition in custom-made map titles / Catherine Dominguès in International journal of cartography, vol 1 n° 1 (August 2015)
PermalinkRecommendations in location-based social networks: a survey / Jie Bao in Geoinformatica [en ligne], vol 19 n° 3 (July - September 2015)
PermalinkPermalinkEfficient continuous top-k spatial keyword queries on road networks / Long Guo in Geoinformatica [en ligne], vol 19 n° 1 (January - March 2015)
PermalinkThree dimensional volunteered geographic information: A prototype of a social virtual globe / Maria Antonia Brovelli in International journal of 3-D information modeling, vol 3 n° 2 (April - June 2014)
Permalink