Descripteur



Etendre la recherche sur niveau(x) vers le bas
An improved ant colony optimization-based algorithm for user-centric multi-objective path planning for ubiquitous environments / Zohreh Masoumi in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : An improved ant colony optimization-based algorithm for user-centric multi-objective path planning for ubiquitous environments Type de document : Article/Communication Auteurs : Zohreh Masoumi, Auteur ; John L. Van Genderen, Auteur ; Sadeghi Niaraki Abolghasem, Auteur Année de publication : 2021 Article en page(s) : pp 137 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] gestion des itinéraires
[Termes descripteurs IGN] informatique ubiquitaire
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] optimisation par colonie de fourmis
[Termes descripteurs IGN] planification
[Termes descripteurs IGN] recherche du chemin optimal
[Termes descripteurs IGN] réseau routierRésumé : (auteur) One of the important issues in ubiquitous geographic information science (GIS) is designing user-centric path finding algorithms to meet user needs. Mostly, in a route planning problem, the user’s purpose is optimization of two or more objective functions simultaneously. Thus, the problem is a multi-objective problem. In the present study, having considered multi-objective optimization methods in path finding, we developed an algorithm for solving this problem using an improved multi-objective ant colony optimization (ACO) algorithm. Modifications are introduced for various components of the ant colony metaheuristics; specifically, for those associated with the ‘ant decision rule’. The proposed algorithm was tested on the studied network. The results demonstrate that the proposed approach has acceptable settings, repeatability and run time. In addition, one of the important research outputs is a pareto-front which allows the user to select the final path according to the desired priorities. Numéro de notice : A2021-081 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595176 date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595176 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96823
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 137 - 154[article]Machine‐learning prediction models for pedestrian traffic flow levels: Towards optimizing walking routes for blind pedestrians / Achituv Cohen in Transactions in GIS, Vol 24 n° 5 (October 2020)
![]()
[article]
Titre : Machine‐learning prediction models for pedestrian traffic flow levels: Towards optimizing walking routes for blind pedestrians Type de document : Article/Communication Auteurs : Achituv Cohen, Auteur ; Sagi Dalyot, Auteur Année de publication : 2020 Article en page(s) : pp 1264-1279 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] gestion des itinéraires
[Termes descripteurs IGN] handicap
[Termes descripteurs IGN] individu non-voyant
[Termes descripteurs IGN] itinéraire piétionnier
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] navigation pédestre
[Termes descripteurs IGN] OpenStreetMap
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] trafic routierRésumé : (Auteur) Navigation and orientation while walking in urban spaces pose serious challenges for blind pedestrians, sometimes even on a daily basis. Research shows the practicability of computerized weighted network route planning algorithms based on OpenStreetMap mapping data for calculating customized routes for blind pedestrians. While data about pedestrians and vehicle traffic flow at different times throughout the day influence the route choices of blind pedestrians, such data do not exist in OpenStreetMap. Quantifying the correlation between spatial structure and traffic flow could be used to fill this gap. As such, we investigated machine‐learning methods to develop a computerized model for predicting pedestrian traffic flow levels, with the objective of enriching the OpenStreetMap database. This article presents prediction results by implementing six machine‐learning algorithms based on parameters relating to the geometrical and topological configuration of streets in OpenStreetMap, as well as points‐of‐interest such as public transportation and shops. The Random Forest algorithm produced the best results, whereby 95% of the testing data were successfully predicted. These results indicate that machine‐learning algorithms can accurately generate necessary temporal data, which when combined with the available crowdsourced open mapping data could augment the reliability of route planning algorithms for blind pedestrians. Numéro de notice : A2020-700 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12674 date de publication en ligne : 04/08/2020 En ligne : https://doi.org/10.1111/tgis.12674 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96210
in Transactions in GIS > Vol 24 n° 5 (October 2020) . - pp 1264-1279[article]Prediction of RTK positioning integrity for journey planning / A. El-Mowafy in Journal of applied geodesy, vol 14 n° 4 (October 2020)
![]()
[article]
Titre : Prediction of RTK positioning integrity for journey planning Type de document : Article/Communication Auteurs : A. El-Mowafy, Auteur ; Nobuaki Kubo, Auteur Année de publication : 2020 Article en page(s) : pp 431 – 443 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes descripteurs IGN] gestion des itinéraires
[Termes descripteurs IGN] modèle 3D de l'espace urbain
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] planification
[Termes descripteurs IGN] positionnement cinématique en temps réel
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] Receiver Autonomous Integrity Monitoring
[Termes descripteurs IGN] système de transport intelligent
[Termes descripteurs IGN] Tokyo (Japon)
[Termes descripteurs IGN] trajetRésumé : (auteur) Positioning integrity is crucial for Intelligent Transport Systems (ITS) applications. In this article, a method is presented for prediction of GNSS positioning integrity for ITS journey planning. This information, in addition to other route information, such as distance and time, can be utilized to choose the safest and economical route. We propose to combine the Advanced Receiver Autonomous Integrity Monitoring (ARAIM) technique, tailored for ITS, with 3D city models. Positioning is performed by GNSS Real-Time Kinematic (RTK) method, which can provide the accuracy required for ITS. A new threat model employed for computation of the protection levels (PLs) for RTK positioning is discussed. Demonstration of the proposed approach is performed through a kinematic test in an urban area in Tokyo. The comparison between the prediction method and the actual observations show that the two estimate close satellite geometry and PLs. The method produced PLs that bounds the actual position errors all the time and they were less than the preset alert limit. Numéro de notice : A2020-678 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jag-2020-0038 date de publication en ligne : 20/10/2020 En ligne : https://doi.org/10.1515/jag-2020-0038 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96174
in Journal of applied geodesy > vol 14 n° 4 (October 2020) . - pp 431 – 443[article]Multi-factor of path planning based on an ant colony optimization algorithm / Mingchang Wang in Annals of GIS, vol 26 n° 2 (April 2020)
![]()
[article]
Titre : Multi-factor of path planning based on an ant colony optimization algorithm Type de document : Article/Communication Auteurs : Mingchang Wang, Auteur ; Chunyu Zhu, Auteur ; Fengyan Wang, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] gestion des itinéraires
[Termes descripteurs IGN] optimisation par colonie de fourmis
[Termes descripteurs IGN] planification
[Termes descripteurs IGN] processus d'analyse hiérarchisée floue
[Termes descripteurs IGN] robotRésumé : (auteur) We propose an improved ant colony algorithm for avoiding obstacles in complex static environments that addresses the problems of a single evaluation factor and low path quality of the traditional ant colony algorithm in path planning. The improvements are: 1) a fuzzy planner is constructed according to the comprehensive evaluation method of fuzzy mathematics and the analytic hierarchy process to comprehensively evaluate and determine the impact of environmental factors, 2) the probability selection formula of the ant colony algorithm is optimized, 3) the pheromone update formula is optimized, and 4) the corner system mechanism is introduced as a post-processing method of path optimization to further smooth the path. Results from simulation experiments of the traditional ant colony algorithm were analysed and compared with those of the improved ant colony algorithm, showing that the latter has a stronger path planning ability and higher algorithm efficiency, resulting in a smoother path with a lower negative impact by environmental factors. Thus, the proposed algorithm is expected to provide a computational basis for effective multi-factor path planning in realistic environments, thereby saving human and material resources. Numéro de notice : A2020-320 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475683.2020.1755725 date de publication en ligne : 13/05/2020 En ligne : https://doi.org/10.1080/19475683.2020.1755725 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95186
in Annals of GIS > vol 26 n° 2 (April 2020)[article]Extracting urban landmarks from geographical datasets using a random forests classifier / Yue Lin in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
![]()
[article]
Titre : Extracting urban landmarks from geographical datasets using a random forests classifier Type de document : Article/Communication Auteurs : Yue Lin, Auteur ; Yuyang Cai, Auteur ; Yue Gong, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 2406 - 2423 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] gestion des itinéraires
[Termes descripteurs IGN] jeu de données localisées
[Termes descripteurs IGN] point de repère
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] représentation mentale spatiale
[Termes descripteurs IGN] saillance
[Termes descripteurs IGN] Shenzhen
[Termes descripteurs IGN] villeRésumé : (auteur) Urban landmarks are of significant importance to spatial cognition and route navigation. However, the current landmark extraction methods mainly focus on the visual salience of landmarks and are insufficient for obtaining high extraction accuracy when the size of the geographical dataset varies. This study introduces a random forests (RF) classifier combining with the synthetic minority oversampling technique (SMOTE) in urban landmark extraction. Both GIS and social sensing data are employed to quantify the structural and cognitive salience of the examined urban features, which are available from basic spatial databases or mainstream web service application programming interfaces (APIs). The results show that the SMOTE-RF model performs well in urban landmark extraction, with the values of recall, precision, F-measure and AUC reaching 0.851, 0.831, 0.841 and 0.841, respectively. Additionally, this method is suitable for both large and small geographical datasets. The ranking of variable importance given by this model further indicates that certain cognitive measures – such as feature class, Weibo popularity and Bing popularity – can serve as crucial factors for determining a landmark. The optimal variable combination for landmark extraction is also acquired, which might provide support for eliminating the variable selection requirement in other landmark extraction methods. Numéro de notice : A2019-426 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1620238 date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1080/13658816.2019.1620238 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93559
in International journal of geographical information science IJGIS > vol 33 n° 12 (December 2019) . - pp 2406 - 2423[article]Gérer au mieux ses équipes d'intervention / Anonyme in Géomatique expert, n° 108 (janvier - février 2016)
PermalinkPlanning unobstructed paths in traffic-aware spatial networks / Shuo Shang in Geoinformatica [en ligne], vol 19 n° 4 (October - December 2015)
PermalinkInformation géographique et dynamiques urbaines, Tome 1. Analyse et simulation de la mobilité des personnes / M. Theriault (2008)
PermalinkMise en œuvre de l'information de la saisie et l'édition des circuits de collecte à l'aide de l'outil Sita (synoptis) / M. Cerciat (2001)
Permalink