Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > granularité d'image
granularité d'image |
Documents disponibles dans cette catégorie (13)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Discriminative information restoration and extraction for weakly supervised low-resolution fine-grained image recognition / Tiantian Yan in Pattern recognition, vol 127 (July 2022)
[article]
Titre : Discriminative information restoration and extraction for weakly supervised low-resolution fine-grained image recognition Type de document : Article/Communication Auteurs : Tiantian Yan, Auteur ; Jian Shi, Auteur ; Haojie Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108629 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] arbre aléatoire minimum
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de données
[Termes IGN] granularité d'image
[Termes IGN] image à basse résolution
[Termes IGN] image à haute résolution
[Termes IGN] relation sémantique
[Termes IGN] texture d'imageRésumé : (auteur) The existing methods of fine-grained image recognition mainly devote to learning subtle yet discriminative features from the high-resolution input. However, their performance deteriorates significantly when they are used for low quality images because a lot of discriminative details of images are missing. We propose a discriminative information restoration and extraction network, termed as DRE-Net, to address the problem of low-resolution fine-grained image recognition, which has widespread application potential, such as shelf auditing and surveillance scenarios. DRE-Net is the first framework for weakly supervised low-resolution fine-grained image recognition and consists of two sub-networks: (1) fine-grained discriminative information restoration sub-network (FDR) and (2) recognition sub-network with the semantic relation distillation loss (SRD-loss). The first module utilizes the structural characteristic of minimum spanning tree (MST) to establish context information for each pixel by employing the spatial structures between each pixel and other pixels, which can help FDR focus on and restore the critical texture details. The second module employs the SRD-loss to calibrate recognition sub-network by transferring the correct relationships between every two pixels on the feature map. Meanwhile the SRD-loss can further prompt the FDR to recover reliable and accurate fine-grained details and guide the recognition sub-network to perceive the discriminative features from the correct relationships. Extensive experiments on three benchmark datasets and one retail product dataset demonstrate the effectiveness of our proposed framework. Numéro de notice : A2022-555 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.patcog.2022.108629 Date de publication en ligne : 06/03/2022 En ligne : https://doi.org/10.1016/j.patcog.2022.108629 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101168
in Pattern recognition > vol 127 (July 2022) . - n° 108629[article]Geographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)
[article]
Titre : Geographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis Type de document : Article/Communication Auteurs : Chuan Yin, Auteur ; Binyu Zhang, Auteur ; Wanzeng Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 360 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] attribut sémantique
[Termes IGN] granularité (informatique)
[Termes IGN] granularité d'image
[Termes IGN] matrice de co-occurrence
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] relation sémantique
[Termes IGN] réseau sémantique
[Termes IGN] synonymieRésumé : (auteur) Expansion of the entity attribute information of geographic knowledge graphs is essentially the fusion of the Internet’s encyclopedic knowledge. However, it lacks structured attribute information, and synonymy and polysemy always exist. These reduce the quality of the knowledge graph and cause incomplete and inaccurate semantic retrieval. Therefore, we normalize the attributes of a geographic knowledge graph based on optimal granularity clustering and co-occurrence analysis, and use structure and the semantic relation of the entity attributes to identify synonymy and correlation between attributes. Specifically: (1) We design a classification system for geographic attributes, that is, using a community discovery algorithm to classify the attribute names. The optimal clustering granularity is identified by the marker target detection algorithm. (2) We complete the fine-grained identification of attribute relations by analyzing co-occurrence relations of the attributes and rule inference. (3) Finally, the performance of the system is verified by manual discrimination using the case of “landscape, forest, field, lake and grass”. The results show the following: (1) The average precision of spatial relations was 0.974 and the average recall was 0.937; the average precision of data relations was 0.977 and the average recall was 0.998. (2) The average F1 for similarity results is 0.473; the average F1 for co-occurrence analysis results is 0.735; the average F1 for rule-based modification results is 0.934; the results show that the accuracy is greater than 90%. Compared to traditional methods only focusing on similarity, the accuracy of synonymous attribute recognition improves the system and we are capable of identifying near-sense attributes. Integration of our system and attribute normalization can greatly improve both the processing efficiency and accuracy. Numéro de notice : A2022-548 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11070360 Date de publication en ligne : 23/06/2022 En ligne : https://doi.org/10.3390/ijgi11070360 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101149
in ISPRS International journal of geo-information > vol 11 n° 7 (July 2022) . - n° 360[article]Invariant structure representation for remote sensing object detection based on graph modeling / Zicong Zhu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
[article]
Titre : Invariant structure representation for remote sensing object detection based on graph modeling Type de document : Article/Communication Auteurs : Zicong Zhu, Auteur ; Xian Sun, Auteur ; Wenhui Diao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5625217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage numérique d'image
[Termes IGN] granularité d'image
[Termes IGN] graphe
[Termes IGN] invariantRésumé : (auteur) Due to the characteristics of vertical orthophoto imaging, the apparent structural features of the object in the remote sensing (RS) image are relatively stable, such as the cross-shaped structure of the aircraft and the rectangular structure of the vehicle. Compared with the traditional visual features, using these features is conducive to improving the accuracy of object detection. However, there are few studies on such characteristics. In this article, we systematically study the invariant structural features of remote sensing objects and propose a graph focusing aggregation network (GFA-Net) to represent the structural features of remote sensing objects. Among them, in view of the problem that traditional convolutional neural networks (CNNs) are sensitive to the changes in rotation, scale, and other factors, which makes it difficult to extract structural features, we propose the graph focusing process (GFP) based on the idea of graph convolution. Analysis and experiments show that graph structure has significant advantages over Euclidean feature space under CNN in expressing such structural features. In order to realize the end-to-end efficient training of the above model, we design a graph aggregation network (GAN) to update the weight of nodes. We verify the effectiveness of our method on the proposed multitask datasets aircraft component segmentation dataset (ACSD) and the large-scale Fine-grAined object recognItion in high-Resolution RS imagery (FAIR1M). Experiments conducted on the object detection datasets of large-scale Dataset for Object deTection in Aerial images (DOTA) and HRSC2016 prove that the proposed method is superior to the current state-of-the-art (SOTA) method. Numéro de notice : A2022-560 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3181686 Date de publication en ligne : 09/06/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3181686 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101186
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 5625217[article]Multigranularity multiclass-layer Markov random field model for semantic segmentation of remote sensing images / Chen Zheng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
[article]
Titre : Multigranularity multiclass-layer Markov random field model for semantic segmentation of remote sensing images Type de document : Article/Communication Auteurs : Chen Zheng, Auteur ; Yun Zhang, Auteur ; Leiguang Wang, Auteur Année de publication : 2021 Article en page(s) : pp 10555 - 10574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] champ aléatoire de Markov
[Termes IGN] granularité d'image
[Termes IGN] segmentation sémantique
[Termes IGN] texture d'imageRésumé : (auteur) Semantic segmentation is one of the most important tasks in remote sensing. However, as spatial resolution increases, distinguishing the homogeneity of each land class and the heterogeneity between different land classes are challenging. The Markov random field model (MRF) is a widely used method for semantic segmentation due to its effective spatial context description. To improve segmentation accuracy, some MRF-based methods extract more image information by constructing the probability graph with pixel or object granularity units, and some other methods interpret the image from different semantic perspectives by building multilayer semantic classes. However, these MRF-based methods fail to capture the relationship between different granularity features extracted from the image and hierarchical semantic classes that need to be interpreted. In this article, a new MRF-based method is proposed to incorporate the multigranularity information and the multilayer semantic classes together for semantic segmentation of remote sensing images. The proposed method develops a framework that builds a hybrid probability graph on both pixel and object granularities and defines a multiclass-layer label field with hierarchical semantic over the hybrid probability graph. A generative alternating granularity inference is suggested to provide the result by iteratively passing and updating information between different granularities and hierarchical semantics. The proposed method is tested on texture images, different remote sensing images obtained by the SPOT5, Gaofen-2, GeoEye, and aerial sensors, and Pavia University hyperspectral image. Experiments demonstrate that the proposed method shows a better segmentation performance than other state-of-the-art methods. Numéro de notice : A2021-873 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3033293 Date de publication en ligne : 11/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3033293 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99132
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 12 (December 2021) . - pp 10555 - 10574[article]Multiscale cloud detection in remote sensing images using a dual convolutional neural network / Markku Luotamo in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Multiscale cloud detection in remote sensing images using a dual convolutional neural network Type de document : Article/Communication Auteurs : Markku Luotamo, Auteur ; Sari Metsämäki, Auteur ; Arto Klami, Auteur Année de publication : 2021 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection des nuages
[Termes IGN] granularité d'image
[Termes IGN] image Sentinel-MSI
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Semantic segmentation by convolutional neural networks (CNN) has advanced the state of the art in pixel-level classification of remote sensing images. However, processing large images typically requires analyzing the image in small patches, and hence, features that have a large spatial extent still cause challenges in tasks, such as cloud masking. To support a wider scale of spatial features while simultaneously reducing computational requirements for large satellite images, we propose an architecture of two cascaded CNN model components successively processing undersampled and full-resolution images. The first component distinguishes between patches in the inner cloud area from patches at the cloud’s boundary region. For the cloud-ambiguous edge patches requiring further segmentation, the framework then delegates computation to a fine-grained model component. We apply the architecture to a cloud detection data set of complete Sentinel-2 multispectral images, approximately annotated for minimal false negatives in a land-use application. On this specific task and data, we achieve a 16% relative improvement in pixel accuracy over a CNN baseline based on patching. Numéro de notice : A2021-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3015272 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3015272 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97781
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp[article]Fast and accurate target detection based on multiscale saliency and active contour model for high-resolution SAR images / Song Tu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)PermalinkContent zooming and information exploration for web and mobile maps. Adaptation of real-time map generalisation to the information seeking strategies of web and mobile users / Pia Bereuter in Revue internationale de géomatique, vol 23 n° 3 - 4 (septembre 2013 - février 2014)PermalinkA multi-granularity parallel model for unified remote sensing image processing webservices / W. Guo in Transactions in GIS, vol 16 n° 6 (December 2012)PermalinkGlobal elevation ancillary data for land-use classification using granular neural networks / D. Stathakis in Photogrammetric Engineering & Remote Sensing, PERS, vol 74 n° 1 (January 2008)PermalinkSatellite image classification using granular neural networks / D. Stathakis in International Journal of Remote Sensing IJRS, vol 27 n°18 - 19 - 20 (October 2006)PermalinkA multiangular object-oriented framework supporting spatio-temporal granularity conversions / Elena Camossi in International journal of geographical information science IJGIS, vol 20 n° 5 (may 2006)PermalinkCartographie de la densité du bâti par analyse granulométrique des images de télédetection / Franck Chopin in Revue Française de Photogrammétrie et de Télédétection, n°173-174 (Juin 2004)PermalinkThéorie photographique appliquée / Paul Kowaliski (1972)Permalink