Descripteur
Documents disponibles dans cette catégorie (21)



Etendre la recherche sur niveau(x) vers le bas
PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
![]()
[article]
Titre : PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Scott Hensley, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 123 - 139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] données lidar
[Termes IGN] forêt boréale
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] polarimétrie radar
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] semis de pointsRésumé : (auteur) This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m). Numéro de notice : A2022-195 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.02.008 Date de publication en ligne : 17/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.02.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99962
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 123 - 139[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Comparing methods to extract crop height and estimate crop coefficient from UAV imagery using structure from motion / Nitzan Malachy in Remote sensing, vol 14 n° 4 (February-2 2022)
![]()
[article]
Titre : Comparing methods to extract crop height and estimate crop coefficient from UAV imagery using structure from motion Type de document : Article/Communication Auteurs : Nitzan Malachy, Auteur ; Imri Zadak, Auteur ; Offer Rozenstein, Auteur Année de publication : 2022 Article en page(s) : n° 810 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse spectrale
[Termes IGN] covariance
[Termes IGN] cultures
[Termes IGN] données lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image captée par drone
[Termes IGN] modèle de croissance végétale
[Termes IGN] régression linéaire
[Termes IGN] série temporelle
[Termes IGN] structure-from-motion
[Termes IGN] zone d'intérêtRésumé : (auteur) Although it is common to consider crop height in agricultural management, variation in plant height within the field is seldom addressed because it is challenging to assess from discrete field measurements. However, creating spatial crop height models (CHMs) using structure from motion (SfM) applied to unmanned aerial vehicle (UAV) imagery can easily be done. Therefore, looking into intra- and inter-season height variability has the potential to provide regular information for precision management. This study aimed to test different approaches to deriving crop height from CHM and subsequently estimate the crop coefficient (Kc). CHMs were created for three crops (tomato, potato, and cotton) during five growing seasons, in addition to manual height measurements. The Kc time-series were derived from eddy-covariance measurements in commercial fields and estimated from multispectral UAV imagery in small plots, based on known relationships between Kc and spectral vegetation indices. A comparison of four methods (Mean, Sample, Median, and Peak) was performed to derive single height values from CHMs. Linear regression was performed between crop height estimations from CHMs against manual height measurements and Kc. Height was best predicted using the Mean and the Sample methods for all three crops (R2 = 0.94, 0.84, 0.74 and RMSE = 0.056, 0.071, 0.051 for cotton, potato, and tomato, respectively), as was the prediction of Kc (R2 = 0.98, 0.84, 0.8 and RMSE = 0.026, 0.049, 0.023 for cotton, potato, and tomato, respectively). The Median and Peak methods had far less success in predicting both, and the Peak method was shown to be sensitive to the size of the area analyzed. This study shows that CHMs can help growers identify spatial heterogeneity in crop height and estimate the crop coefficient for precision irrigation applications. Numéro de notice : A2022-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14040810 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.3390/rs14040810 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99774
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 810[article]Predicting biomass dynamics at the national extent from digital aerial photogrammetry / Bronwyn Price in International journal of applied Earth observation and geoinformation, vol 90 (August 2020)
![]()
[article]
Titre : Predicting biomass dynamics at the national extent from digital aerial photogrammetry Type de document : Article/Communication Auteurs : Bronwyn Price, Auteur ; Lars T. Waser, Auteur ; Zuyuan Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 102116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse aérienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] hauteur de la végétation
[Termes IGN] image aérienne
[Termes IGN] indicateur de service écosystémique
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] photogrammétrie aérienne
[Termes IGN] puits de carbone
[Termes IGN] régression linéaire
[Termes IGN] série temporelle
[Termes IGN] Suisse
[Termes IGN] surveillance écologique
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) The demand for precise mapping and monitoring of forest resources, such as above ground biomass (AGB), has increased rapidly. National accounting and monitoring of AGB requires regularly updated information based on consistent methods. While remote sensing technologies such as airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) have been shown to deliver the necessary 3D spatial data for AGB mapping, the capacity of repeat acquisition, remotely sensed, vegetation structure data for AGB monitoring has received less attention. Here, we use vegetation height models (VHMs) derived from repeat acquisition DAP data (with ALS terrain correction) to map and monitor woody AGB dynamics across Switzerland over 35 years (1983-2017 inclusive), using a linear least-squares regression approach. We demonstrate a consistent relationship between canopy height derived from DAP and field-based NFI measures of woody AGB across four inventory periods. Over the environmentally heterogeneous area of Switzerland, our models have a comparable predictive performance (R2 = 0.54) to previous work predicting AGB based on ALS metrics. Pearson correlation coefficients between measured and predicted changes in woody AGB over time increased with shorter time gaps ( Numéro de notice : A2020-717 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102116 Date de publication en ligne : 15/04/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102116 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96292
in International journal of applied Earth observation and geoinformation > vol 90 (August 2020) . - n° 102116[article]Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images / Zhen Guan in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
![]()
[article]
Titre : Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images Type de document : Article/Communication Auteurs : Zhen Guan, Auteur ; Amr Abd-Elrahman, Auteur ; Zhen Fan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 171 - 186 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse
[Termes IGN] canopée
[Termes IGN] données spatiotemporelles
[Termes IGN] hauteur de la végétation
[Termes IGN] image à haute résolution
[Termes IGN] indice foliaire
[Termes IGN] orthophotoplan numérique
[Termes IGN] phénologie
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Quantifying canopy biophysical parameters is critical to agricultural research and farm management. In this study, strawberry dry biomass and leaf area were modeled statistically using high spatial and temporal resolution imagery. A mobile field data acquisition system was used to acquire thousands of very high resolution (~0.5 mm) close-range images seven times throughout the strawberry growing season. Ortho-mosaics and dense point clouds were generated through Structure from Motion (SfM) and used in Object-Based Image Analysis (OBIA) at the sub-leaf level to extract canopy structure variables such as planimetric canopy area, canopy average height, and canopy smoothness metric. Regression analysis was carried out using these image-derived canopy variables as predictors to model leaf area ( = 0.79; ten-fold cross-validation RMSE = 0.056 m2) and dry biomass ( = 0.84; ten-fold cross-validation RMSE = 7.72 g) obtained through destructive measurements. Results indicate consistent predictive power through the season and across 17 strawberry genotypes. The study showed that the canopy smoothness metric developed in this study as an indicator of canopy density could complement other variables (planimetric canopy area, canopy average height) that describe canopy geometric properties. Numéro de notice : A2020-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.021 Date de publication en ligne : 18/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94757
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 171 - 186[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 RAB Revue Centre de documentation En réserve 3L Disponible 081-2020053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging / Bo Li in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
![]()
[article]
Titre : Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging Type de document : Article/Communication Auteurs : Bo Li, Auteur ; Xiangming Xu, Auteur ; Li Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 161 -1 72 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] couvert végétal
[Termes IGN] hauteur de la végétation
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] image RVB
[Termes IGN] indice de végétation
[Termes IGN] pomme de terre
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] rendement agricoleRésumé : (auteur) Rapid and accurate biomass and yield estimation facilitates efficient plant phenotyping and site-specific crop management. A low altitude unmanned aerial vehicle (UAV) was used to acquire RGB and hyperspectral imaging data for a potato crop canopy at two growth stages to estimate the above-ground biomass and predict crop yield. Field experiments included six cultivars and multiple treatments of nitrogen, potassium, and mixed compound fertilisers. Crop height was estimated using the difference between digital surface model and digital elevation models derived from RGB imagery. Combining with two narrow-band vegetation indices selected by the RReliefF feature selection algorithm. Random Forest regression models demonstrated high prediction accuracy for both fresh and dry above-ground biomass, with a coefficient of determination (r2) > 0.90. Crop yield was predicted using four narrow-band vegetation indices and crop height (r2 = 0.63) with imagery data obtained 90 days after planting. A Partial Least Squares regression model based on the full wavelength spectra demonstrated improved yield prediction (r2 = 0.81). This study demonstrated the merits of UAV-based RGB and hyperspectral imaging for estimating the above-ground biomass and yield of potato crops, which can be used to assist in site-specific crop management. Numéro de notice : A2020-125 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.013 Date de publication en ligne : 28/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.013 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94750
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 161 -1 72[article]Forest degradation and biomass loss along the Chocó region of Colombia / Victoria Meyer in Carbon Balance and Management, vol 14 (March 2019)
PermalinkEucalyptus growth and yield system: Linking individual-tree and stand-level growth models in clonal Eucalypt plantations in Brazil / Henrique Ferraco Scolforo in Forest ecology and management, vol 432 (15 January 2019)
PermalinkDEM refinement by low vegetation removal based on the combination of full waveform data and progressive TIN densification / Hongchao Ma in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)
PermalinkA hierarchical approach to three-dimensional segmentation of LiDAR data at single-tree level in a multilayered forest / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)
PermalinkForest above ground biomass inversion by fusing GLAS with optical remote sensing data / Xiaohuan Xi in ISPRS International journal of geo-information, vol 5 n° 4 (April 2016)
PermalinkPermalinkDetermination of the spatial structure of vegetation on the repository of the mine “Fryderyk” in Tarnowskie Góry, based on airborne laser scanning from the ISOK project and digital orthophotomaps / Marta Szostak in Geodesy and cartography, vol 64 n° 1 (June 2015)
PermalinkLandscape monitoring of post-industrial areas using LiDAR and GIS technology / Piotr Wezyk in Geodesy and cartography, vol 64 n° 1 (June 2015)
PermalinkVegetation height estimation precision with compact PolInSAR and homogeneous random volume over ground model / Aurélien Arnaubec in IEEE Transactions on geoscience and remote sensing, vol 52 n° 3 (March 2014)
PermalinkAssessing post-fire regeneration in a Mediterranean mixed forest using lidar data and artificial neural networks / Haifa Debouk in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 12 (December 2013)
Permalink