Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > dendrologie > dendrométrie > hauteur des arbres
hauteur des arbres |
Documents disponibles dans cette catégorie (189)



Etendre la recherche sur niveau(x) vers le bas
Climate and ungulate browsing impair regeneration dynamics in spruce-fir-beech forests in the French Alps / Mithila Unkule in Annals of Forest Science [en ligne], vol 79 n° 1 (2022)
![]()
[article]
Titre : Climate and ungulate browsing impair regeneration dynamics in spruce-fir-beech forests in the French Alps Type de document : Article/Communication Auteurs : Mithila Unkule, Auteur ; Christian Piedallu, Auteur ; Philippe Balandier, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] Alpes (France)
[Termes IGN] Cervidae
[Termes IGN] Fagus sylvatica
[Termes IGN] faune locale
[Termes IGN] hauteur des arbres
[Termes IGN] humidité du sol
[Termes IGN] Jura, massif du
[Termes IGN] Picea abies
[Termes IGN] placette d'échantillonnage
[Termes IGN] régénération (sylviculture)
[Termes IGN] sécheresse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Key message: Different components of water balance and temperature reduce density and height growth of saplings of Picea abies (L.) H. Karst (Norway spruce), Abies alba Mill. (silver fir) and Fagus sylvatica L. (European beech) in mixed uneven-aged forests in the French Alps and Jura mountains. Ungulate browsing is an additional pressure on fir and beech that could jeopardise the renewal of these species in the future.
Context: The uncertainty in tree recruitment rates raises questions about the factors affecting regeneration processes in forests. Factors such as climate, light, competition and ungulate browsing pressure may play an important role in determining regeneration, forest structures and thus future forest composition.
Aims: The objective of this study was to quantify sapling densities and height increments of spruce, fir and beech and to identify dominant environmental variables influencing them in mixed uneven-aged forests in the French Alps and Jura mountains.
Methods: Sapling height increment and density were recorded in 152 plots, and non-linear mixed models were obtained to establish relations between them and environmental factors known to affect regeneration, namely altitude, slope, aspect, canopy openness, soil characteristics, temperature, precipitation and ungulate browsing.
Results: Regeneration density, varying from 0 to 7 saplings per m 2, decreased with sapling height and was also negatively affected for spruce by PET, but positively for fir by precipitation and for beech by mean annual soil water content. Height increment reached up to 50 cm annually, increasing with sapling height and canopy openness and decreasing under high maximum summer temperatures for spruce and beech. The statistical effect of different environmental variables varied slightly among species but trends were quite similar. Additionally, ungulate browsing was high, with fir being the most intensely browsed, followed closely by beech, while spruce was rarely browsed.
Conclusions: All these results suggest that more temperature warming and a decrease in water availability could negatively impact sapling growth and density in the three species, with possible reduction of forest renewal fluxes. The observed increase of ungulate populations leading to increased browsing could be particularly detrimental to fir saplings.Numéro de notice : A2022-509 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01126-y Date de publication en ligne : 23/03/2022 En ligne : https://doi.org/10.1186/s13595-022-01126-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101045
in Annals of Forest Science [en ligne] > vol 79 n° 1 (2022) . - n° 11[article]Automated inventory of broadleaf tree plantations with UAS imagery / Aishwarya Chandrasekaran in Remote sensing, vol 14 n° 8 (April-2 2022)
![]()
[article]
Titre : Automated inventory of broadleaf tree plantations with UAS imagery Type de document : Article/Communication Auteurs : Aishwarya Chandrasekaran, Auteur ; Guofan Shao, Auteur ; Songlin Fei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1931 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] feuillu
[Termes IGN] hauteur à la base du houppier
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] plantation forestière
[Termes IGN] R (langage)
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) With the increased availability of unmanned aerial systems (UAS) imagery, digitalized forest inventory has gained prominence in recent years. This paper presents a methodology for automated measurement of tree height and crown area in two broadleaf tree plantations of different species and ages using two different UAS platforms. Using structure from motion (SfM), we generated canopy height models (CHMs) for each broadleaf plantation in Indiana, USA. From the CHMs, we calculated individual tree parameters automatically through an open-source web tool developed using the Shiny R package and assessed the accuracy against field measurements. Our analysis shows higher tree measurement accuracy with the datasets derived from multi-rotor platform (M600) than with the fixed wing platform (Bramor). The results show that our automated method could identify individual trees (F-score > 90%) and tree biometrics (root mean square error Numéro de notice : A2022-351 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14081931 Date de publication en ligne : 16/04/2022 En ligne : https://doi.org/10.3390/rs14081931 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100539
in Remote sensing > vol 14 n° 8 (April-2 2022) . - n° 1931[article]Comparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data / Andras Balazs in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
![]()
[article]
Titre : Comparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data Type de document : Article/Communication Auteurs : Andras Balazs, Auteur ; Eero Liski, Auteur ; Sakari Tuominen, Auteur Année de publication : 2022 Article en page(s) : n° 100012 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme génétique
[Termes IGN] bois sur pied
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] covariance
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] peuplement forestier
[Termes IGN] réseau neuronal artificiel
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) In the remote sensing of forests, point cloud data from airborne laser scanning contains high-value information for predicting the volume of growing stock and the size of trees. At the same time, laser scanning data allows a very high number of potential features that can be extracted from the point cloud data for predicting the forest variables. In some methods, the features are first extracted by user-defined algorithms and the best features are selected based on supervised learning, whereas both tasks can be carried out automatically by deep learning methods typically based on deep neural networks. In this study we tested k-nearest neighbor method combined with genetic algorithm (k-NN), artificial neural network (ANN), 2-dimensional convolutional neural network (2D-CNN) and 3-dimensional CNN (3D-CNN) for estimating the following forest variables: volume of growing stock, stand mean height and mean diameter. The results indicate that there were no major differences in the accuracy of the tested methods, but the ANN and 3D-CNN generally resulted in the lowest RMSE values for the predicted forest variables and the highest R2 values between the predicted and observed forest variables. The lowest RMSE scores were 20.3% (3D-CNN), 6.4% (3D-CNN) and 11.2% (ANN) and the highest R2 results 0.90 (3D-CNN), 0.95 (3D-CNN) and 0.85 (ANN) for volume of growing stock, stand mean height and mean diameter, respectively. Covariances of all response variable combinations and all predictions methods were lower than corresponding covariances of the field observations. ANN predictions had the highest covariances for mean height vs. mean diameter and total growing stock vs. mean diameter combinations and 3D-CNN for mean height vs. total growing stock. CNNs have distinct theoretical advantage over the other methods in complex recognition or classification tasks, but the utilization of their full potential may possibly require higher point density clouds than applied here. Thus, the relatively low density of the point clouds data may have been a contributing factor to the somewhat inconclusive ranking of the methods in this study. The input data and computer codes are available at: https://github.com/balazsan/ALS_NNs. Numéro de notice : A2022-265 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2022.100012 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100263
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 4 (April 2022) . - n° 100012[article]Estimating forest attributes in airborne laser scanning based inventory using calibrated predictions from external models / Ana de Lera Garrido in Silva fennica, vol 56 n° 2 (April 2022)
![]()
[article]
Titre : Estimating forest attributes in airborne laser scanning based inventory using calibrated predictions from external models Type de document : Article/Communication Auteurs : Ana de Lera Garrido, Auteur ; Terje Gobakken, Auteur ; Hans Ole Ørka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 10695 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] étalonnage
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] Norvège
[Termes IGN] parcelle forestière
[Termes IGN] placette d'échantillonnage
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Forest management inventories assisted by airborne laser scanner data rely on predictive models traditionally constructed and applied based on data from the same area of interest. However, forest attributes can also be predicted using models constructed with data external to where the model is applied, both temporal and geographically. When external models are used, many factors influence the predictions’ accuracy and may cause systematic errors. In this study, volume, stem number, and dominant height were estimated using external model predictions calibrated using a reduced number of up-to-date local field plots or using predictions from reparametrized models. We assessed and compared the performance of three different calibration approaches for both temporally and spatially external models. Each of the three approaches was applied with different numbers of calibration plots in a simulation, and the accuracy was assessed using independent validation data. The primary findings were that local calibration reduced the relative mean difference in 89% of the cases, and the relative root mean squared error in 56% of the cases. Differences between application of temporally or spatially external models were minor, and when the number of local plots was small, calibration approaches based on the observed prediction errors on the up-to-date local field plots were better than using the reparametrized models. The results showed that the estimates resulting from calibrating external models with 20 plots were at the same level of accuracy as those resulting from a new inventory. Numéro de notice : A2022-367 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10695 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.14214/sf.10695 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100589
in Silva fennica > vol 56 n° 2 (April 2022) . - n° 10695[article]PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
![]()
[article]
Titre : PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Scott Hensley, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 123 - 139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] données lidar
[Termes IGN] forêt boréale
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] polarimétrie radar
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] semis de pointsRésumé : (auteur) This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m). Numéro de notice : A2022-195 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.02.008 Date de publication en ligne : 17/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.02.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99962
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 123 - 139[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Problems with models assessing influences of tree size and inter-tree competitive processes on individual tree growth: a cautionary tale / P.W. West in Journal of Forestry Research, vol 33 n° 2 (April 2022)
PermalinkTwo-phase forest inventory using very-high-resolution laser scanning / Henrik J. Persson in Remote sensing of environment, vol 271 (March- 2 2022)
PermalinkComparison of UAV-based LiDAR and digital aerial photogrammetry for measuring crown-level canopy height in the urban environment / Longfei Zhou in Urban Forestry & Urban Greening, vol 69 (March 2022)
PermalinkEstimating aboveground biomass of urban forest trees with dual-source UAV acquired point clouds / Jiayuan Lin in Urban Forestry & Urban Greening, vol 69 (March 2022)
PermalinkEvaluation of the mixed-effects model and quantile regression approaches for predicting tree height in larch (Larix olgensis) plantations in northeastern China / Longfei Xie in Canadian Journal of Forest Research, Vol 52 n° 3 (March 2022)
PermalinkMulti-species individual tree segmentation and identification based on improved mask R-CNN and UAV imagery in mixed forests / Chong Zhang in Remote sensing, vol 14 n° 4 (February-2 2022)
PermalinkA stand-level growth and yield model for thinned and unthinned even-aged Scots pine forests in Norway / Christian Kuehne in Silva fennica, vol 56 n° 1 (January 2022)
PermalinkIntegrating terrestrial laser scanning and unmanned aerial vehicle photogrammetry to estimate individual tree attributes in managed coniferous forests in Japan / Katsuto Shimizu in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)
PermalinkVariable selection for estimating individual tree height using genetic algorithm and random forest / Evandro Nunes Miranda in Forest ecology and management, vol 504 (15 January 2022)
PermalinkModeling post-logging height growth of black spruce-dominated boreal forests by combining airborne LiDAR and time since harvest maps / Batistin Bour in Forest ecology and management, vol 502 (15 december 2021)
Permalink