Descripteur
Documents disponibles dans cette catégorie (30)



Etendre la recherche sur niveau(x) vers le bas
The effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events / Sidgley Camargo de Andrade in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : The effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events Type de document : Article/Communication Auteurs : Sidgley Camargo de Andrade, Auteur ; João Porto de Albuquerque, Auteur ; Camilo Restrepo-Estrada, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1140 - 1165 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] auto-régression
[Termes IGN] distribution spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données socio-économiques
[Termes IGN] hétérogénéité spatiale
[Termes IGN] mobilité urbaine
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] pluie
[Termes IGN] précipitation
[Termes IGN] Sao Paulo
[Termes IGN] TwitterRésumé : (auteur) Although it is acknowledged that urban inequalities can lead to biases in the production of social media data, there is a lack of studies which make an assessment of the effects of intra-urban movements in real-world urban analytics applications, based on social media. This study investigates the spatial heterogeneity of social media with regard to the regular intra-urban movements of residents by means of a case study of rainfall-related Twitter activity in São Paulo, Brazil. We apply a spatial autoregressive model that uses population and income as covariates and intra-urban mobility flows as spatial weights to explain the spatial distribution of the social response to rainfall events in Twitter vis-à-vis rainfall radar data. Results show high spatial heterogeneity in the response of social media to rainfall events, which is linked to intra-urban inequalities. Our model performance (R2=0.80) provides evidence that urban mobility flows and socio-economic indicators are significant factors to explain the spatial heterogeneity of thematic spatiotemporal patterns extracted from social media. Therefore, urban analytics research and practice should consider not only the influence of socio-economic profile of neighborhoods but also the spatial interaction introduced by intra-urban mobility flows to account for spatial heterogeneity when using social media data. Numéro de notice : A2022-405 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1957898 Date de publication en ligne : 03/08/2021 En ligne : https://doi.org/10.1080/13658816.2021.1957898 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100717
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1140 - 1165[article]A cost-effective algorithm for calibrating multiscale geographically weighted regression models / Bo Wu in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : A cost-effective algorithm for calibrating multiscale geographically weighted regression models Type de document : Article/Communication Auteurs : Bo Wu, Auteur ; Jinbiao Yan, Auteur ; Hui Lin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 898 - 917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multiéchelle
[Termes IGN] grande échelle
[Termes IGN] hétérogénéité spatiale
[Termes IGN] jeu de données
[Termes IGN] modélisation spatiale
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) The multiscale geographically weighted regression (MGWR) model is a useful extension of the geographically weighted regression (GWR) model. MGWR, however, is a kind of Nadaraya–Watson kernel smoother, which usually leads to inaccurate estimates for the regression function and suffers from the boundary effect. Moreover, the widely used calibration technique for the MGWR with a back-fitting estimator (MGWR-BF) is computationally demanding, preventing it from being applied to large-scale data. To overcome these problems, we proposed a local linear-fitting-based MGWR (MGWR-LL) by introducing a local spatially varying coefficient model in which coefficients of different variables could be characterised as linear functions of spatial coordinates with different degrees of smoothness. Then the model was calibrated with a two-step least-squared estimated algorithm. Both simulated and actual data were implemented to validate the performance of the proposed method. The results consistently showed that the MGWR-LL automatically corrected for the boundary effect and improved the accuracy in most cases, not only in the goodness-of-fit measure but also in reducing the bias of the coefficient estimates. Moreover, the MGWR-LL significantly outperformed the MGWR-BF in computational cost, especially for larger-scale data. These results demonstrated that the proposed method can be a useful tool for the MGWR calibration. Numéro de notice : A2022-342 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1999457 Date de publication en ligne : 29/11/2021 En ligne : https://doi.org/10.1080/13658816.2021.1999457 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100516
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 898 - 917[article]Clustering with implicit constraints: A novel approach to housing market segmentation / Xiaoqi Zhang in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Clustering with implicit constraints: A novel approach to housing market segmentation Type de document : Article/Communication Auteurs : Xiaoqi Zhang, Auteur ; Yanqiao Zheng, Auteur ; Qiong Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 585 - 608 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme glouton
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] classification par nuées dynamiques
[Termes IGN] contrainte topologique
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] marché foncier
[Termes IGN] programmation par contraintes
[Termes IGN] segmentation
[Termes IGN] structure spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Constrained clustering has been widely studied and outperforms both the traditional unsupervised clustering and experience-oriented approaches. However, the existing literature on constrained clustering concentrates on spatially explicit constraints, while many constraints in housing market studies are implicit. Ignoring the implicit constraints will result in unreliable clustering results. This article develops a novel framework for constrained clustering, which takes implicit constraints into account. Specifically, the research extends the classical greedy searching algorithm by adding one back-and-forth searching step, efficiently coping with the order sensitivity. Via evaluation on both synthetic and real data sets, it turns out that the proposed algorithm outperforms existing algorithms, even when only the traditional pairwise constraints are provided. In an application to a concrete housing market segmentation problem, the proposed algorithm shows its power to accommodate user-specified homogeneity criteria to extract hidden information on the underlying urban spatial structure. Numéro de notice : A2022-362 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12878 Date de publication en ligne : 26/12/2021 En ligne : https://doi.org/10.1111/tgis.12878 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100581
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 585 - 608[article]Assessing COVID-induced changes in spatiotemporal structure of mobility in the United States in 2020: a multi-source analytical framework / Evgeny Noi in International journal of geographical information science IJGIS, vol 36 n° 3 (March 2022)
![]()
[article]
Titre : Assessing COVID-induced changes in spatiotemporal structure of mobility in the United States in 2020: a multi-source analytical framework Type de document : Article/Communication Auteurs : Evgeny Noi, Auteur ; Alexander Rudolph, Auteur ; Somayeh Dodge, Auteur Année de publication : 2022 Article en page(s) : pp 585 - 616 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] autocorrélation spatiale
[Termes IGN] comportement
[Termes IGN] données multisources
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] Etats-Unis
[Termes IGN] hétérogénéité spatiale
[Termes IGN] maladie virale
[Termes IGN] mobilité
[Termes IGN] mobilité territorialeRésumé : (auteur) The COVID-19 pandemic resulted in profound changes in mobility patterns and altered travel behaviors locally and globally. As a result, movement metrics have widely been used by researchers and policy makers as indicators to study, model, and mitigate the impacts of the COVID-19 pandemic. However, the veracity and variability of these mobility metrics have not been studied. This paper provides a systematic review of mobility and social distancing metrics available to researchers during the pandemic in 2020 in the United States. Twenty-six indices across nine different sources are analyzed and assessed with respect to their spatial and temporal coverage as well as sample representativeness at the county-level. Finally global and local indicators of spatial association are computed to explore spatial and temporal heterogeneity in mobility patterns. The structure of underlying changes in mobility and social distancing is examined in different US counties and across different data sets. We argue that a single measure might not describe all aspects of mobility perfectly. Numéro de notice : A2022-207 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2005796 Date de publication en ligne : 21/12/2021 En ligne : https://doi.org/10.1080/13658816.2021.2005796 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100023
in International journal of geographical information science IJGIS > vol 36 n° 3 (March 2022) . - pp 585 - 616[article]Comparing methods to extract crop height and estimate crop coefficient from UAV imagery using structure from motion / Nitzan Malachy in Remote sensing, vol 14 n° 4 (February-2 2022)
![]()
[article]
Titre : Comparing methods to extract crop height and estimate crop coefficient from UAV imagery using structure from motion Type de document : Article/Communication Auteurs : Nitzan Malachy, Auteur ; Imri Zadak, Auteur ; Offer Rozenstein, Auteur Année de publication : 2022 Article en page(s) : n° 810 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse spectrale
[Termes IGN] covariance
[Termes IGN] cultures
[Termes IGN] données lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image captée par drone
[Termes IGN] modèle de croissance végétale
[Termes IGN] régression linéaire
[Termes IGN] série temporelle
[Termes IGN] structure-from-motion
[Termes IGN] zone d'intérêtRésumé : (auteur) Although it is common to consider crop height in agricultural management, variation in plant height within the field is seldom addressed because it is challenging to assess from discrete field measurements. However, creating spatial crop height models (CHMs) using structure from motion (SfM) applied to unmanned aerial vehicle (UAV) imagery can easily be done. Therefore, looking into intra- and inter-season height variability has the potential to provide regular information for precision management. This study aimed to test different approaches to deriving crop height from CHM and subsequently estimate the crop coefficient (Kc). CHMs were created for three crops (tomato, potato, and cotton) during five growing seasons, in addition to manual height measurements. The Kc time-series were derived from eddy-covariance measurements in commercial fields and estimated from multispectral UAV imagery in small plots, based on known relationships between Kc and spectral vegetation indices. A comparison of four methods (Mean, Sample, Median, and Peak) was performed to derive single height values from CHMs. Linear regression was performed between crop height estimations from CHMs against manual height measurements and Kc. Height was best predicted using the Mean and the Sample methods for all three crops (R2 = 0.94, 0.84, 0.74 and RMSE = 0.056, 0.071, 0.051 for cotton, potato, and tomato, respectively), as was the prediction of Kc (R2 = 0.98, 0.84, 0.8 and RMSE = 0.026, 0.049, 0.023 for cotton, potato, and tomato, respectively). The Median and Peak methods had far less success in predicting both, and the Peak method was shown to be sensitive to the size of the area analyzed. This study shows that CHMs can help growers identify spatial heterogeneity in crop height and estimate the crop coefficient for precision irrigation applications. Numéro de notice : A2022-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14040810 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.3390/rs14040810 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99774
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 810[article]A geographically weighted artificial neural network / Julian Haguenauer in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
PermalinkModelling spatial processes in quantitative human geography / A. Stewart Fotheringham in Annals of GIS, vol 28 n° 1 (January 2022)
PermalinkReplication and the search for the laws in the geographic sciences / Peter Kedron in Annals of GIS, vol 28 n° 1 (January 2022)
PermalinkIdentifying surface urban heat island drivers and their spatial heterogeneity in China’s 281 cities: An empirical study based on multiscale geographically weighted regression / Lu Niu in Remote sensing, vol 13 n° 21 (November-1 2021)
PermalinkMultiscale geographically and temporally weighted regression with a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in Beijing / Zhi Zhang in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
PermalinkBenford’s law and geographical information – the example of OpenStreetMap / Franz-Benjamin Mocnik in International journal of geographical information science IJGIS, vol 35 n° 9 (September 2021)
PermalinkCellular automata based land-use change simulation considering spatio-temporal influence heterogeneity of light rail transit construction: A case in Nanjing, China / Jiaming Na in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)
PermalinkImpact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions / Xin-Ming Zhu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkGeographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
PermalinkDeriving a frozen area fraction from Metop ASCAT backscatter based on Sentinel-1 / Helena Bergstedt in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
Permalink