Descripteur



Etendre la recherche sur niveau(x) vers le bas
Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling Type de document : Article/Communication Auteurs : Stefanos Georganos, Auteur ; Tais Grippa, Auteur ; Assane Niang Gadiaga, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 121 -1 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autocorrélation spatiale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Dakar
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] population
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity. Numéro de notice : A2021-080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595177 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96822
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 121 -1 36[article]Deriving a frozen area fraction from Metop ASCAT backscatter based on Sentinel-1 / Helena Bergstedt in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Deriving a frozen area fraction from Metop ASCAT backscatter based on Sentinel-1 Type de document : Article/Communication Auteurs : Helena Bergstedt, Auteur ; Annett Bartsch, Auteur ; Anton Neureiter, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6008 - 6019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Autriche
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] courbe de Pearson
[Termes descripteurs IGN] dégel
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] fonte des glaces
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] image MetOp-ASCAT
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] pergélisol
[Termes descripteurs IGN] rétrodiffusion
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] télédétection en hyperfréquence
[Termes descripteurs IGN] température au solRésumé : (auteur) Surface state data derived from spaceborne microwave sensors with suitable temporal sampling are to date only available in low spatial resolution (25–50 km). Current approaches do not adequately resolve spatial heterogeneity in landscape-scale freeze–thaw processes. We propose to derive a frozen fraction instead of binary freeze–thaw information. This introduces the possibility to monitor the gradual freezing and thawing of complex landscapes. Frozen fractions were retrieved from Advanced Scatterometer (ASCAT, C-band) backscatter on a 12.5-km grid for three sites in noncontinuous permafrost areas in northern Finland and the Austrian Alps. To calibrate the retrieval approach, frozen fractions based on Sentinel-1 synthetic aperture radar (SAR, C-band) were derived for all sites and compared to ASCAT backscatter. We found strong relationships for ASCAT backscatter with Sentinel-1 derived frozen fractions (Pearson correlations of −0.85 to −0.96) for the sites in northern Finland and less strong relationships for the Alpine site (Pearson correlations −0.579 and −0.611, including and excluding forested areas). Applying the derived linear relationships, predicted frozen fractions using ASCAT backscatter values showed root mean square error (RMSE) values between 7.26% and 16.87% when compared with Sentinel-1 frozen fractions. The validation of the Sentinel-1 derived freeze–thaw classifications showed high accuracy when compared to in situ near-surface soil temperature (84.7%–94%). Results are discussed with regard to landscape type, differences between spring and autumn, and gridding. This article serves as a proof of concept, showcasing the possibility to derive frozen fraction from coarse spatial resolution scatterometer time series to improve the representation of spatial heterogeneity in landscape-scale surface state. Numéro de notice : A2020-525 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2967364 date de publication en ligne : 13/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2967364 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95702
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6008 - 6019[article]Modelling housing rents using spatial autoregressive geographically weighted regression: a case study in cracow, Poland / Mateusz Tomal in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
![]()
[article]
Titre : Modelling housing rents using spatial autoregressive geographically weighted regression: a case study in cracow, Poland Type de document : Article/Communication Auteurs : Mateusz Tomal, Auteur Année de publication : 2020 Article en page(s) : 20 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] autorégression
[Termes descripteurs IGN] bien immobilier
[Termes descripteurs IGN] Cracovie (Pologne)
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] économétrie
[Termes descripteurs IGN] évaluation foncière
[Termes descripteurs IGN] gestion foncière
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] méthode de Monte-Carlo
[Termes descripteurs IGN] méthode des moindres carrés
[Termes descripteurs IGN] régression géographiquement pondéréeRésumé : (auteur) The proportion of tenants will undoubtedly rise in Poland, where at present, the ownership housing model is very dominant. As a result, the rental housing market in Poland is currently under-researched in comparison with owner-occupancy. In order to narrow this research gap, this study attempts to identify the determinants affecting rental prices in Cracow. The latter were obtained from the internet platform otodom.pl using the web scraping technique. To identify rent determinants, ordinary least squares (OLS) regression and spatial econometric methods were used. In particular, traditional spatial autoregressive model (SAR) and spatial autoregressive geographically weighted regression (GWR-SAR) were employed, which made it possible to take into account the spatial heterogeneity of the parameters of determinants and the spatially changing spatial autocorrelation of housing rents. In-depth analysis of rent determinants using the GWR-SAR model exposed the complexity of the rental market in Cracow. Estimates of the above model revealed that many local markets can be identified in Cracow, with different factors shaping housing rents. However, one can identify some determinants that are ubiquitous for almost the entire city. This concerns mainly the variables describing the area of the flat and the age of the building. Moreover, the Monte Carlo test indicated that the spatial autoregressive parameter also changes significantly over space. Numéro de notice : A2020-314 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9060346 date de publication en ligne : 26/05/2020 En ligne : https://doi.org/10.3390/ijgi9060346 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95169
in ISPRS International journal of geo-information > vol 9 n° 6 (June 2020) . - 20 p.[article]A comprehensive framework for studying diffusion patterns of imported dengue with individual-based movement data / Haiyan Tao in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
![]()
[article]
Titre : A comprehensive framework for studying diffusion patterns of imported dengue with individual-based movement data Type de document : Article/Communication Auteurs : Haiyan Tao, Auteur ; Keli Wang, Auteur ; Li Zhuo, Auteur Année de publication : 2020 Article en page(s) : pp 604 - 624 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] diffusion spatiale
[Termes descripteurs IGN] distribution de Poisson
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] hétérogénéité environnementale
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] maladie infectieuse
[Termes descripteurs IGN] migration humaine
[Termes descripteurs IGN] mobilité territoriale
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] modèle mathématique
[Termes descripteurs IGN] origine - destination
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] risque sanitaire
[Termes descripteurs IGN] urbanisationRésumé : (auteur) International communication and global cooperation have greatly accelerated the worldwide spread of dengue fever, increasing the impact of imported cases on dengue outbreaks in non-naturally endemic areas. Existing studies mostly focus on describing the quantitative relationship between imported cases and local transmission but ignore the space-time diffusion mode of imported cases under the influence of individual mobility. In this paper, we propose a comprehensive framework at a fine scale to establish the disease transmission network and a mathematical model, which constructs ‘source-sink’ links between the imported and indigenous cases on a regular grid with a spatial resolution of 1 km to explore the diffusion pattern and spatiotemporal heterogeneity of imported cases. An application to Guangzhou, China, reveals the main flow and transmission path of imported cases under the influence of human movement and identifies the spatiotemporal distribution of transmission speed according to the time lag of each source-sink link. In addition, we demonstrate that using individual-based movement data and socio-economic factors to study human mobility and imported cases can help to understand the driving forces of dengue spread. Our research provides a comprehensive framework for the analysis of early dengue transmission patterns with benefits to similar urban applications. Numéro de notice : A2020-107 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1684497 date de publication en ligne : 18/11/2019 En ligne : https://doi.org/10.1080/13658816.2019.1684497 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94707
in International journal of geographical information science IJGIS > vol 34 n° 3 (March 2020) . - pp 604 - 624[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020031 SL Revue Centre de documentation Revues en salle Disponible The application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study / Yanan Yan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
![]()
[article]
Titre : The application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study Type de document : Article/Communication Auteurs : Yanan Yan, Auteur ; Lei Deng, Auteur ; L. Xian-Lin, Auteur Année de publication : 2020 Article en page(s) : pp 161 - 167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] agrégation spatiale
[Termes descripteurs IGN] anisotropie
[Termes descripteurs IGN] approche pixel
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] dispersion
[Termes descripteurs IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle de transfert radiatif
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] télédétectionRésumé : (auteur) Spectral decomposition of mixed pixels can provide information about the abundance of end members but fails to indicate the spatial distribution of end members in vegetation remote sensing. This work is a significant attempt to use the bidirectional reflectance distribution function (BRDF) characteristics of mixed pixels in the prediction of spatial-heterogeneity metrics. Data sets from this function with different spatial distributions were constructed by the discrete anisotropic radiative transfer model, and three spatial aggregation and dispersion metrics were calculated: percentage of like adjacencies, spatial division index, and aggregation index. A simple linear regression method was used to construct the prediction model of spatial aggregation and dispersion metrics. The potential of multiangle remote sensing model for identifying spatial patterns well was demonstrated, and its importance was found to differ for different spatial aggregation and dispersion metrics. Specifically, the precision of the model based on multiangle reflectance used for predicting the spatial division index could meet a minimum root mean square of 5.95%. The reflectance features from backward observation on the principal plane play the leading role in recognizing the spatial heterogeneity of mixed pixels. The prediction model is sufficiently robust to distinguish the same vegetation with different growth trends, but also performs well when the ground objects have a smaller reflectance difference in the mixed pixels in a certain band. This study is expected to offer a new thought for spatial-heterogeneity identification of ground objects and thus promote the development of remote sensing technology in assessing spatial distribution. Numéro de notice : A2020-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.3.161 date de publication en ligne : 01/03/2020 En ligne : https://doi.org/10.14358/PERS.86.3.161 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94775
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 3 (March 2020) . - pp 161 - 167[article]Streambank topography: an accuracy assessment of UAV-based and traditional 3D reconstructions / Benjamin U. Meinen in International Journal of Remote Sensing IJRS, vol 41 n° 1 (01 - 08 janvier 2020)
PermalinkAccurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits / Tawanda W. Gara in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
PermalinkTesting spatial heterogeneity in geographically weighted principal components analysis / Javier Roca-Pardiñas in International journal of geographical information science IJGIS, vol 31 n° 3-4 (March-April 2017)
PermalinkExposure-related forest-steppe: A diverse landscape type determined by topography and climate / Martin Hais in Journal of Arid Environments, vol 135 (December 2016)
PermalinkCombined effects of area, connectivity, history and structural heterogeneity of woodlands on the species richness of hoverflies (Diptera: Syrphidae) / Pierre-Alexis Herrault in Landscape ecology, vol 31 n° 4 (May 2016)
PermalinkMapping the value of ecosystem services: A case study from the Austrian Alps / Alessandro Paletto in Annals of forest research, vol 58 n° 1 (January 2015)
PermalinkSpatial chromatic model in high-dimensional spaces and the uniqueness of chromatic code: a new perspective of geographic entity–space relationship / Weining Zhu in International journal of geographical information science IJGIS, vol 29 n° 1 (January 2015)
PermalinkLa construction d'une matrice de flux à partir de traces de téléphones portables / Françoise Bahoken in Cartes & Géomatique, n° 217 (septembre 2013)
![]()
PermalinkEstimation of imprecision in length and area computation in vector databases including production processes description / Jean-François Girres (26/05/2010)
PermalinkFormal specifications to automatically identify heterogeneities [diaporama] / Nathalie Abadie (02/06/2009)
Permalink