Descripteur
Documents disponibles dans cette catégorie (3)



Etendre la recherche sur niveau(x) vers le bas
Uncertainty analysis of remotely-acquired thermal infrared data to extract the thermal Properties of active lava surfaces / James A. Thompson in Remote sensing, vol 12 n° 1 (January 2020)
![]()
[article]
Titre : Uncertainty analysis of remotely-acquired thermal infrared data to extract the thermal Properties of active lava surfaces Type de document : Article/Communication Auteurs : James A. Thompson, Auteur ; Michael S. Ramsey, Auteur Année de publication : 2020 Article en page(s) : 21 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Advanced Spaceborne Thermal Emission and Reflection Radiometer
[Termes IGN] classification pixellaire
[Termes IGN] éruption volcanique
[Termes IGN] image MASTER
[Termes IGN] image thermique
[Termes IGN] incertitude des données
[Termes IGN] Kilauea (volcan)
[Termes IGN] lave
[Termes IGN] rayonnement infrarouge thermique
[Termes IGN] surveillance géologique
[Termes IGN] température
[Termes IGN] volcanRésumé : (auteur) Using thermal infrared (TIR) data from multiple instruments and platforms for analysis of an entire active volcanic system is becoming more common with the increasing availability of new data. However, the accuracy and uncertainty associated with these combined datasets are poorly constrained over the full range of eruption temperatures and possible volcanic products. Here, four TIR datasets acquired over active lava surfaces are compared to quantify the uncertainty, accuracy, and variability in derived surface radiance, emissivity, and kinetic temperature. These data were acquired at Kīlauea volcano in Hawai’i, USA, in January/February 2017 and 2018. The analysis reveals that spatial resolution strongly limits the accuracy of the derived surface thermal properties, resulting in values that are significantly below the expected values for molten basaltic lava at its liquidus temperature. The surface radiance is ~2400% underestimated in the orbital data compared to only ~200% in ground-based data. As a result, the surface emissivity is overestimated and the kinetic temperature is underestimated by at least 30% and 200% in the airborne and orbital datasets, respectively. A thermal mixed pixel separation analysis is conducted to extract only the molten fraction within each pixel in an attempt to mitigate this complicating factor. This improved the orbital and airborne surface radiance values to within 15% of the expected values and the derived emissivity and kinetic temperature within 8% and 12%, respectively. It is, therefore, possible to use moderate spatial resolution TIR data to derive accurate and reliable emissivity and kinetic temperatures of a molten lava surface that are comparable to the higher resolution data from airborne and ground-based instruments. This approach, resulting in more accurate kinetic temperature and emissivity of the active surfaces, can improve estimates of flow hazards by greatly improving lava flow propagation models that rely on these data. Numéro de notice : A2020-224 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12010193 Date de publication en ligne : 05/01/2020 En ligne : https://doi.org/10.3390/rs12010193 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94939
in Remote sensing > vol 12 n° 1 (January 2020) . - 21 p.[article]Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery / Gang Chen in ISPRS Journal of photogrammetry and remote sensing, vol 102 (April 2015)
![]()
[article]
Titre : Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery Type de document : Article/Communication Auteurs : Gang Chen, Auteur ; Margaret R. Metz, Auteur ; David M. Rizzo, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 38 - 47 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse en composantes principales
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] délimitation
[Termes IGN] houppier
[Termes IGN] image à ultra haute résolution
[Termes IGN] image aérienne
[Termes IGN] image MASTER
[Termes IGN] impact sur l'environnement
[Termes IGN] incendie de forêt
[Termes IGN] maladie phytosanitaire
[Termes IGN] réflectance végétaleRésumé : (auteur) Forest ecosystems are subject to a variety of disturbances with increasing intensities and frequencies, which may permanently change the trajectories of forest recovery and disrupt the ecosystem services provided by trees. Fire and invasive species, especially exotic disease-causing pathogens and insects, are examples of disturbances that together could pose major threats to forest health. This study examines the impacts of fire and exotic disease (sudden oak death) on forests, with an emphasis on the assessment of post-fire burn severity in a forest where trees have experienced three stages of disease progression pre-fire: early-stage (trees retaining dried foliage and fine twigs), middle-stage (trees losing fine crown fuels), and late-stage (trees falling down). The research was conducted by applying Geographic Object-Based Image Analysis (GEOBIA) to MASTER airborne images that were acquired immediately following the fire for rapid assessment and contained both high-spatial (4 m) and high-spectral (50 bands) resolutions. Although GEOBIA has gradually become a standard tool for analyzing high-spatial resolution imagery, high-spectral resolution data (dozens to hundreds of bands) can dramatically reduce computation efficiency in the process of segmentation and object-based variable extraction, leading to complicated variable selection for succeeding modeling. Hence, we also assessed two widely used band reduction algorithms, PCA (principal component analysis) and MNF (minimum noise fraction), for the delineation of image objects and the subsequent performance of burn severity models using either PCA or MNF derived variables. To increase computation efficiency, only the top 5 PCA and MNF and top 10 PCA and MNF components were evaluated, which accounted for 10% and 20% of the total number of the original 50 spectral bands, respectively. Results show that if no band reduction was applied the models developed for the three stages of disease progression had relatively similar performance, where both spectral responses and texture contributed to burn assessments. However, the application of PCA and MNF introduced much greater variation among models across the three stages. For the early-stage disease progression, neither band reduction algorithms improved or retained the accuracy of burn severity modeling (except for the use of 10 MNF components). Compared to the no-band-reduction scenario, band reduction led to a greater level of overestimation of low-degree burns and underestimation of medium-degree burns, suggesting that the spectral variation removed by PCA and MNF was vital for distinguishing between the spectral reflectance from disease-induced dried crowns (still retaining high structural complexity) and fire ash. For the middle-stage, both algorithms improved the model R2 values by 2–37%, while the late-stage models had comparable or better performance to those using the original 50 spectral bands. This could be explained by the loss of tree crowns enabling better signal penetration, thus leading to reduced spectral variation from canopies. Hence, spectral bands containing a high degree of random noise were correctly removed by the band reduction algorithms. Compared to the middle-stage, the late-stage forest stands were covered by large piles of fallen trees and branches, resulting in higher variability of MASTER imagery. The ability of band reduction to improve the model performance for these late-stage forest stands was reduced, because the valuable spectral variation representing the actual late-stage forest status was partially removed by both algorithms as noise. Our results indicate that PCA and MNF are promising for balancing computation efficiency and the performance of burn severity models in forest stands subject to the middle and late stages of sudden oak death disease progression. Compared to PCA, MNF dramatically reduced image spectral variation, generating larger image objects with less complexity of object shapes. Whereas, PCA-based models delivered superior performance in most evaluated cases suggesting that some key spectral variability contributing to the accuracy of burn severity models in diseased forests may have been removed together with true spectral noise through MNF transformations. Numéro de notice : A2015-475 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.01.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2015.01.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77183
in ISPRS Journal of photogrammetry and remote sensing > vol 102 (April 2015) . - pp 38 - 47[article]Hyperspectral image classification using nearest feature line embedding approach / Yang-Lang Chang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 1 (January 2014)
![]()
[article]
Titre : Hyperspectral image classification using nearest feature line embedding approach Type de document : Article/Communication Auteurs : Yang-Lang Chang, Auteur ; Jan-Nan Liu, Auteur ; Chin-Chuan Han, Auteur ; Ying-Nong Chen, Auteur Année de publication : 2014 Article en page(s) : pp 278 - 287 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse discriminante
[Termes IGN] classification barycentrique
[Termes IGN] classification dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] image MASTER
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] occupation du sol
[Termes IGN] réduction géométriqueRésumé : (Auteur) Eigenspace projection methods are widely used for feature extraction from hyperspectral images (HSI) for the classification of land cover. Projection transformation is used to reduce higher dimensional feature vectors to lower dimensional vectors for more accurate classification of land cover types. In this paper, a nearest feature line embedding (NFLE) transformation is proposed for the dimension reduction (DR) of an HSI. The NFL measurement is embedded in the transformation during the discriminant analysis phase, instead of the matching phase. Three factors, including class separability, neighborhood structure preservation, and NFL measurement, are considered simultaneously to determine an effective and discriminating transformation in the eigenspaces for land cover classification. Three state-of-the-art classifiers, the nearest-neighbor, support vector machine, and NFL classifiers, were used to classify the reduced features. The proposed NFLE transformation is compared with different feature extraction approaches and evaluated using two benchmark data sets, the MASTER set at Au-Ku and the AVIRIS set at Northwest Tippecanoe County. The experimental results demonstrate that the NFLE approach is effective for DR in land cover classification in the field of Earth remote sensing. Numéro de notice : A2014-036 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2238635 En ligne : https://doi.org/10.1109/TGRS.2013.2238635 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32941
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 1 tome 1 (January 2014) . - pp 278 - 287[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014011A RAB Revue Centre de documentation En réserve 3L Disponible