Descripteur



Etendre la recherche sur niveau(x) vers le bas
Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations Type de document : Article/Communication Auteurs : Shengbiao Wu, Auteur ; Jing Wang, Auteur ; Zhengbing Yan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 36 - 48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] forêt tempérée
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] photosynthèse
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance forestièreRésumé : (auteur) In temperate forests, autumn leaf phenology signals the end of leaf growing season and shows large variability across tree-crowns, which importantly mediates photosynthetic seasonality, hydrological regulation, and nutrient cycling of forest ecosystems. However, critical challenges remain with the monitoring of autumn leaf phenology at the tree-crown scale due to the lack of spatially explicit information for individual tree-crowns and high (spatial and temporal) resolution observations with nadir view. Recent availability of the PlanetScope constellation with a 3 m spatial resolution and near-daily nadir view coverage might help address these observational challenges, but remains underexplored. Here we developed an integration of PlanetScope with drone observations for improved monitoring of crown-scale autumn leaf phenology in a temperate forest in Northeast China. This integration includes: 1) visual identification of individual tree-crowns (and species) from drone observations; 2) extraction of time series of PlanetScope vegetation indices (VIs) for each identified tree-crown; 3) derivation of three metrics of autumn leaf phenology from the extracted VI time series, including the start of fall (SOF), middle of fall (MOF), and end of fall (EOF); and 4) accuracy assessments of the PlanetScope-derived phenology metrics with reference from local phenocams. Our results show that (1) the PlanetScope-drone integration captures large inter-crown phenological variations, with a range of 28 days, 25 days, and 30 days for SOF, MOF, and EOF, respectively, (2) the extracted crown-level phenology metrics strongly agree with those derived from local phenocams, with a root-mean-square-error (RMSE) of 4.1 days, 3.0 days and 5.4 days for SOF, MOF, and EOF, respectively, and (3) PlanetScope maps large variations in autumn leaf phenology over the entire forest landscape with spatially explicit information. These results demonstrate the ability of our proposed method in monitoring the large spatial heterogeneity of crown-scale autumn leaf phenology in the temperate forest, suggesting the potential of using high-resolution satellites to advance crown-scale phenology studies over large geographical areas. Numéro de notice : A2021-011 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.017 date de publication en ligne : 13/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96305
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 36 - 48[article]An integrated approach for detection and prediction of greening situation in a typical desert area in China and its human and climatic factors analysis / Lei Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
![]()
[article]
Titre : An integrated approach for detection and prediction of greening situation in a typical desert area in China and its human and climatic factors analysis Type de document : Article/Communication Auteurs : Lei Zhou, Auteur ; Siyu Wang, Auteur ; Mingyi Du, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 24 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] changement d'utilisation du sol
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] couvert végétal
[Termes descripteurs IGN] désert
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surface cultivéeRésumé : (auteur) The combined study of vegetation coverage (VC) and land use change provides important scientific guidance for the restoration and protection of arid regions. Taking Hongjian Nur (HJN) Lake in the desert region as a case study, the VC of this area was calculated using a normalized difference vegetation index (NDVI), which is based on a mixed pixel decomposition method. A grey forecasting model (GM) (1, 1) was used to predict future VC. The driving factors of VC and land use change were analyzed. The results indicate that the average VC of the whole watershed showed a gradual increase from 0.29 to 0.49 during 2000–2017. The prediction results of the GM VC showed that the greening trend is projected to continue until 2027. The area of farmland in the watershed increased significantly and its area was mainly converted from unused land, grassland, and forest. The reason for increased VC may be that the combination of the exploitation of unused land and climate change, which is contrary to the country’s sustainable development goals (SDG; goal 15). Therefore, the particularities of the local ecological environment in China’s desert area needs to be considered in the development of ecological engineering projects. Numéro de notice : A2020-311 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9060364 date de publication en ligne : 02/06/2020 En ligne : https://doi.org/10.3390/ijgi9060364 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95163
in ISPRS International journal of geo-information > vol 9 n° 6 (June 2020) . - 24 p.[article]Estimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data / Rochelle Schneider dos Santos in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
![]()
[article]
Titre : Estimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data Type de document : Article/Communication Auteurs : Rochelle Schneider dos Santos, Auteur Année de publication : 2020 Article en page(s) : 10 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme du gradient
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] chaleur
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] ilot thermique urbain
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] Londres
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] mortalité
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] politique publique
[Termes descripteurs IGN] Python (langage de programmation)
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] station météorologique
[Termes descripteurs IGN] température au sol
[Termes descripteurs IGN] température de l'air
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Urbanisation generates greater population densities and an increase in anthropogenic heat generation. These factors elevate the urban–rural air temperature (Ta) difference, thus generating the Urban Heat Island (UHI) phenomenon. Ta is used in the fields of public health and epidemiology to quantify deaths attributable to heat in cities around the world: the presence of UHI can exacerbate exposure to high temperatures during summer periods, thereby increasing the risk of heat-related mortality. Measuring and monitoring the spatial patterns of Ta in urban contexts is challenging due to the lack of a good network of weather stations. This study aims to produce a parsimonious model to retrieve maximum Ta (Tmax) at high spatio-temporal resolution using Earth Observation (EO) satellite data. The novelty of this work is twofold: (i) it will produce daily estimations of Tmax for London at 1 km2 during the summertime between 2006 and 2017 using advanced statistical techniques and satellite-derived predictors, and (ii) it will investigate for the first time the predictive power of the gradient boosting algorithm to estimate Tmax for an urban area. In this work, 6 regression models were calibrated with 6 satellite products, 3 geospatial features, and 29 meteorological stations. Stepwise linear regression was applied to create 9 groups of predictors, which were trained and tested on each regression method. This study demonstrates the potential of machine learning algorithms to predict Tmax: the gradient boosting model with a group of five predictors (land surface temperature, Julian day, normalised difference vegetation index, digital elevation model, solar zenith angle) was the regression model with the best performance (R² = 0.68, MAE = 1.60 °C, and RMSE = 2.03 °C). This methodological approach is capable of being replicated in other UK cities, benefiting national heat-related mortality assessments since the data (provided by NASA and the UK Met Office) and programming languages (Python) sources are free and open. This study provides a framework to produce a high spatio-temporal resolution of Tmax, assisting public health researchers to improve the estimation of mortality attributable to high temperatures. In addition, the research contributes to practice and policy-making by enhancing the understanding of the locations where mortality rates may increase due to heat. Therefore, it enables a more informed decision-making process towards the prioritisation of actions to mitigate heat-related mortality amongst the vulnerable population. Numéro de notice : A2020-448 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2020.102066 date de publication en ligne : 10/02/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102066 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95524
in International journal of applied Earth observation and geoinformation > vol 88 (June 2020) . - 10 p.[article]Incorporating Sentinel-1 SAR imagery with the MODIS MCD64A1 burned area product to improve burn date estimates and reduce burn date uncertainty in wildland fire mapping / Kristofer Lasko in Geocarto international, vol 35 n° 6 ([01/05/2020])
![]()
[article]
Titre : Incorporating Sentinel-1 SAR imagery with the MODIS MCD64A1 burned area product to improve burn date estimates and reduce burn date uncertainty in wildland fire mapping Type de document : Article/Communication Auteurs : Kristofer Lasko, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Asie du sud-est
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] dynamique de la végétation
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] incertitude temporelle
[Termes descripteurs IGN] Laos
[Termes descripteurs IGN] qualité de l'air
[Termes descripteurs IGN] ThaïlandeRésumé : (auteur) Wildland fires result in a unique signal detectable by multispectral remote sensing and synthetic aperture radar (SAR). However, in many regions, such as Southeast Asia, persistent cloud cover and aerosols temporarily obstruct multispectral satellite observations of burned area, including the MODIS MCD64A1 Burned Area Product (BAP). Multiple days between cloud free pre- and post-burn MODIS observations result in burn date uncertainty. We incorporate cloud-penetrating, C-band SAR-with the MODIS MCD64A1 BAP in Southeast Asia, to exploit the strengths of each dataset to better estimate the burn date and reduce the potential burn date uncertainty range. We incorporate built-in quality control using MCD64A1 to reduce erroneous pixel updating. We test the method over part of Laos and Thailand during April 2016 and found average uncertainty reduction of 4.5 d, improving 15% of MCD64A1 pixels. A new BAP could improve monitoring temporal trends of wildland fires, air quality studies and monitoring post-fire vegetation dynamics. Numéro de notice : A2020-226 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1608592 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/https://doi.org/10.1080/10106049.2019.1608592 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94948
in Geocarto international > vol 35 n° 6 [01/05/2020][article]Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database / Collin Homer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
![]()
[article]
Titre : Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database Type de document : Article/Communication Auteurs : Collin Homer, Auteur ; Jon Dewitz, Auteur ; Suming Jin, Auteur Année de publication : 2020 Article en page(s) : pp 184 - 199 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Advanced Very High Resolution Radiometer
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] base de données d'occupation du sol
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] changement d'utilisation du sol
[Termes descripteurs IGN] cultures
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] Medium Resolution Imaging Spectrometer
[Termes descripteurs IGN] surveillance de la végétation
[Termes descripteurs IGN] zone humideRésumé : (auteur) The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database. Numéro de notice : A2020-121 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.019 date de publication en ligne : 03/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.019 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94746
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 184 - 199[article]Spatiotemporal variation of NDVI in the vegetation growing season in the source region of the yellow river, China / Mingyue Wang in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
PermalinkTemporal Validation of Four LAI Products over Grasslands in the Northeastern Tibetan Plateau / Gaofei Yin in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 4 (April 2020)
PermalinkWavelet and non-parametric statistical based approach for long term land cover trend analysis using time series EVI data / Niraj Priyadarshi in Geocarto international, vol 35 n° 5 ([01/04/2020])
PermalinkAssessing the shape accuracy of coarse resolution burned area identifications / Michael L. Humber in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkSpectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkThermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis / Jiong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
PermalinkMODIS-based land surface temperature for climate variability and change research: the tale of a typical semi-arid to arid environment / Salahuddin M. Jaber in European journal of remote sensing, vol 53 n°1 (2020)
PermalinkMultitemporal Landsat-MODIS fusion for cropland drought monitoring in El Salvador / Nguyen-Thanh Son in Geocarto international, vol 34 n° 12 ([15/09/2019])
PermalinkCalculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 / Ali Mokhtari in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkLong-term soil moisture content estimation using satellite and climate data in agricultural area of Mongolia / Enkhjargal Natsagdorj in Geocarto international, vol 34 n° 7 ([01/06/2019])
Permalink