Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image Sentinel > image Sentinel-MSI
image Sentinel-MSISynonyme(s)image sentinel-2Voir aussi |
Documents disponibles dans cette catégorie (266)



Etendre la recherche sur niveau(x) vers le bas
Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics / Jakob Wernicke in Remote sensing of environment, vol 279 (15 September 2022)
![]()
[article]
Titre : Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics Type de document : Article/Communication Auteurs : Jakob Wernicke, Auteur ; Christian Torsten Seltmann, Auteur ; Ralf Wenzel, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113134 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Allemagne
[Termes IGN] analyse comparative
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] semis de points
[Termes IGN] stratificationRésumé : (auteur) Knowledge about the forest canopy stratification is of essential importance for forest management and planning. Collecting structural information (e.g. natural regeneration) still depends on cost and labour intensive forest inventories with a coarse spatio-temporal resolution. Remote sensing partly overcomes these limitations and particularly active sensors of type light detection and ranging (LiDAR) have proven their great potential of separating forest strata. The applicability of LiDAR metrics for the differentiation of the spruce dominated forest strata in Central Germany has not been tested yet. Additionally, studying the potential of Sentinel-2 metrics for the classification of forest strata is lacking too. In this study, we investigated the capabilities of six different classification approaches for the differentiation of five forest strata that are typical for the study region. Reference data were derived from forest inventory measurements surveyed on a dense 200 × 200 m grid. The six classification approaches were trained with fused and un-fused LiDAR and Sentinel-2 inferred metrics. The classification results were compared using the overall mean accuracy, sensitivity and specificity via receivers operating characteristics of multi-class problems. We were interested in the classification abilities of Sentinel-2 metrics due to the obvious advantages of Sentinel-2 based metrics (free of charge, high spatio-temporal coverage). We assumed that the canopy structure determines the reflection on stand level and thus might facilitate the classification of different canopy strata. Beforehand, it was important to examine the influence of distinctly imbalanced and collinear reference data on the classification results. We found that the Random Forest classifier most accurately separated the five forest strata with a mean overall accuracy of 83.3% (Kappa = 76.2%). These values were achieved from balanced training data and the classification capability was confirmed by classification results from an independent test data set. Fused predictors of active (LiDAR) and passive (Sentinel-2) remote sensing revealed no substantial improvement in the classification accuracy due to the dominant role of LiDAR metrics. Herein, we identified that especially the height variability, top height, portion of LiDAR-returns between 2 m and 10 m and the standard deviation of the return number between the 25th and 50th height percentile, predominately contributed to the classification accuracy. Classification results purely based on Sentinel-2 metrics revealed a rather small overall mean accuracy of 54.7%. The metrics (e.g. median, variance, entropy) were derived from Sentinel-2 indices, covering the visible and near to short infrared spectrum. Variable importance computations unraveled a detectable but minor contribution of MSI, TCG, NDVI to the classification result. Finally, our data driven observations illustrated serious drawbacks associated to data imbalance, collinearity and autocorrelation and presented practical guidance to cope with these issues. Numéro de notice : A2022-510 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113134 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101047
in Remote sensing of environment > vol 279 (15 September 2022) . - n° 113134[article]Large-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt / André Bertoncini in Remote sensing of environment, vol 278 (September 2022)
![]()
[article]
Titre : Large-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt Type de document : Article/Communication Auteurs : André Bertoncini, Auteur ; Caroline Aubry-Wake, Auteur ; John W. Pomeroy, Auteur Année de publication : 2022 Article en page(s) : n° 113101 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] Colombie-Britannique (Canada)
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] fonte des glaces
[Termes IGN] glacier
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SRTM
[Termes IGN] image Terra-MODIS
[Termes IGN] incendie de forêt
[Termes IGN] montagne
[Termes IGN] neige
[Termes IGN] pouvoir de résolution radiométriqueRésumé : (auteur) Soot deposition from wildfires decreases snow and ice albedo and increases the absorption of shortwave radiation, which advances and accelerates melt. Soot deposition also induces algal growth, which further decreases snow and ice albedo. In recent years, increasingly severe and widespread wildfire activity has occurred in western Canada in association with climate change. In the summers of 2017 and 2018, westerly winds transported smoke from extensive record-breaking wildfires in British Columbia eastward to the Canadian Rockies, where substantial amounts of soot were deposited on high mountain glaciers, snowfields, and icefields. Several studies have addressed the problem of soot deposition on snow and ice, but the spatiotemporal resolution applied has not been compatible with studying mountain icefields that are extensive but contain substantial internal variability and have dynamical albedos. This study evaluates spatial patterns in the albedo decrease and net shortwave radiation (K*) increase caused by soot from intense wildfires in Western Canada deposited on the Columbia Icefield (151 km2), Canadian Rockies, during 2017 and 2018. Twelve Sentinel-2 images were used to generate high spatial resolution albedo retrievals during four summers (2017 to 2020) using a MODIS bidirectional reflectance distribution function (BRDF) model, which was employed to model the snow and ice reflectance anisotropy. Remote sensing estimates were evaluated using site-measured albedo on the icefield's Athabasca Glacier tongue, resulting in a R2, mean bias, and root mean square error (RMSE) of 0.68, 0.019, and 0.026, respectively. The biggest inter-annual spatially averaged soot-induced albedo declines were of 0.148 and 0.050 (2018 to 2020) for southeast-facing glaciers and the snow plateau, respectively. The highest inter-annual spatially-averaged soot-induced shortwave radiative forcing was 203 W/m2 for southeast-facing glaciers (2018 to 2020) and 106 W/m2 for the snow plateau (2017 to 2020). These findings indicate that snow albedo responded rapidly to and recovered rapidly from soot deposition. However, ice albedo remained low the year after fire, and this was likely related to a bio-albedo feedback involving microorganisms. Snow and ice K* were highest during low albedo years, especially for south-facing glaciers. These large-scale effects accelerated melt of the Columbia Icefield. The findings highlight the importance of using large-area high spatial resolution albedo estimates to analyze the effect of wildfire soot deposition on snow and ice albedo and K* on icefields, which is not possible using other approaches. Numéro de notice : A2022-466 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113101 Date de publication en ligne : 30/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113101 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100800
in Remote sensing of environment > vol 278 (September 2022) . - n° 113101[article]Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping / Sandro Martinis in Remote sensing of environment, vol 278 (September 2022)
![]()
[article]
Titre : Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping Type de document : Article/Communication Auteurs : Sandro Martinis, Auteur ; Sandro Groth, Auteur ; Marc Wieland, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113077 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] Allemagne
[Termes IGN] Australie
[Termes IGN] carte thématique
[Termes IGN] fusion d'images
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] Mozambique
[Termes IGN] prévention des risques
[Termes IGN] série temporelle
[Termes IGN] Soudan
[Termes IGN] surveillance hydrologique
[Termes IGN] variation saisonnière
[Termes IGN] zone à risqueRésumé : (auteur) Satellite-based flood mapping has become an important part of disaster response. In order to accurately distinguish flood inundation from normally present conditions, up-to-date, high-resolution information on the seasonal water cover is crucial. This information is usually neglected in disaster management, which may result in a non-reliable representation of the flood extent, mainly in regions with highly dynamic hydrological conditions. In this study, we present a fully automated method to generate a global reference water product specifically designed for the use in global flood mapping applications based on high resolution Earth Observation data. The proposed methodology combines existing processing pipelines for flood detection based on Sentinel-1/2 data and aggregates permanent as well as seasonal water masks over an adjustable reference time period. The water masks are primarily based on the analysis of Sentinel-2 data and are complemented by Sentinel-1-based information in optical data scarce regions. First results are demonstrated in five selected study areas (Australia, Germany, India, Mozambique, and Sudan), distributed across different climate zones and are systematically compared with external products. Further, the proposed product is exemplary applied to three real flood events in order to evaluate the impact of the used reference water mask on the derived flood extent. Results show, that it is possible to generate a consistent reference water product at 10–20 m spatial resolution, that is more suitable for the use in rapid disaster response than previous masks. The proposed multi-sensor approach is capable of producing reasonable results, even if only few or no information from optical data is available. Further it becomes clear, that the consideration of seasonality of water bodies, especially in regions with highly dynamic hydrological and climatic conditions, reduces potential over-estimation of the inundation extent and gives a more reliable picture on flood-affected areas. Numéro de notice : A2022-467 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113077 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113077 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100801
in Remote sensing of environment > vol 278 (September 2022) . - n° 113077[article]Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series / Maximilian Lange in Remote sensing of environment, vol 277 (August 2022)
![]()
[article]
Titre : Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series Type de document : Article/Communication Auteurs : Maximilian Lange, Auteur ; Hannes Feilhauer, Auteur ; Ingolf Kühn, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112888 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Allemagne
[Termes IGN] apprentissage automatique
[Termes IGN] bande spectrale
[Termes IGN] carte d'utilisation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] échantillonnage de données
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] prairie
[Termes IGN] série temporelleRésumé : (auteur) Information on grassland land-use intensity (LUI) is crucial for understanding trends and dynamics in biodiversity, ecosystem functioning, earth system science and environmental monitoring. LUI is a major driver for numerous environmental processes and indicators, such as primary production, nitrogen deposition and resilience to climate extremes. However, large extent, high resolution data on grassland LUI is rare. New satellite generations, such as Copernicus Sentinel-2, enable a spatially comprehensive detection of the mainly subtle changes induced by land-use intensification by their fine spatial and temporal resolution. We developed a methodology quantifying key parameters of grassland LUI such as grazing intensity, mowing frequency and fertiliser application across Germany using Convolutional Neural Networks (CNN) on Sentinel-2 satellite data with 20 m × 20 m spatial resolution. Subsequently, these land-use components were used to calculate a continuous LUI index. Predictions of LUI and its components were validated using comprehensive in situ grassland management data. A feature contribution analysis using Shapley values substantiates the applicability of the methodology by revealing a high relevance of springtime satellite observations and spectral bands related to vegetation health and structure. We achieved an overall classification accuracy of up to 66% for grazing intensity, 68% for mowing, 85% for fertilisation and an r2 of 0.82 for subsequently depicting LUI. We evaluated the methodology's robustness with a spatial 3-fold cross-validation by training and predicting on geographically distinctly separated regions. Spatial transferability was assessed by delineating the models' area of applicability. The presented methodology enables a high resolution, large extent mapping of land-use intensity of grasslands. Numéro de notice : A2022-468 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112888 Date de publication en ligne : 13/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112888 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100805
in Remote sensing of environment > vol 277 (August 2022) . - n° 112888[article]Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network / Alex David Singleton in Computers, Environment and Urban Systems, vol 95 (July 2022)
![]()
[article]
Titre : Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network Type de document : Article/Communication Auteurs : Alex David Singleton, Auteur ; Dani Arribas-Bel, Auteur ; John Murray, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101802 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Grande-Bretagne
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] morphologie urbaine
[Termes IGN] pondération
[Termes IGN] processeur graphiqueRésumé : (auteur) The increased availability of high-resolution multispectral imagery captured by remote sensing platforms provides new opportunities for the characterisation and differentiation of urban context. The discovery of generalized latent representations from such data are however under researched within the social sciences. As such, this paper exploits advances in machine learning to implement a new method of capturing measures of urban context from multispectral satellite imagery at a very small area level through the application of a convolutional autoencoder (CAE). The utility of outputs from the CAE is enhanced through the application of spatial weighting, and the smoothed outputs are then summarised using cluster analysis to generate a typology comprising seven groups describing salient patterns of differentiated urban context. The limits of the technique are discussed with reference to the resolution of the satellite data utilised within the study and the interaction between the geography of the input data and the learned structure. The method is implemented within the context of Great Britain, however, is applicable to any location where similar high resolution multispectral imagery are available. Numéro de notice : A2022-370 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101802 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101802 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100606
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101802[article]Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information / Murali Krishna Gumma in Geocarto international, vol 37 n° 7 ([15/06/2022])
PermalinkCombination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve / Michael Lechner in Remote sensing, vol 14 n° 11 (June-1 2022)
PermalinkGraph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)
PermalinkHow can Sentinel-2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? / Katja Kuhwald in Remote sensing in ecology and conservation, vol 8 n° 3 (June 2022)
PermalinkSpecies level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery / Semiha Demirbaş Çağlayana in Geocarto international, vol 37 n° 6 (June 2022)
PermalinkAnalyzing spatio-temporal pattern of the forest fire burnt area in Uttarakhand using Sentinel-2 data / Shailja Mamgain in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
PermalinkClassification of vegetation classes by using time series of Sentinel-2 images for large scale mapping in Cameroon / Hermann Tagne in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
PermalinkDeep learning for the detection of early signs for forest damage based on satellite imagery / Dennis Wittich in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
PermalinkFramework for automatic coral reef extraction using Sentinel-2 image time series / Qizhi Zhang in Marine geodesy, vol 45 n° 3 (May 2022)
PermalinkMonitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images / Omer Gokberk Narin in Geocarto international, vol 37 n° 5 ([01/05/2022])
Permalink