Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image Sentinel > image Sentinel-MSI
image Sentinel-MSISynonyme(s)image sentinel-2Voir aussi |
Documents disponibles dans cette catégorie (308)



Etendre la recherche sur niveau(x) vers le bas
The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
![]()
[article]
Titre : The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes Type de document : Article/Communication Auteurs : Anna Iglseder, Auteur ; Markus Immitzer, Auteur ; Alena Dostalova, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] cartographie écologique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données Copernicus
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle numérique de surface
[Termes IGN] paysage forestier
[Termes IGN] protection de la biodiversité
[Termes IGN] site Natura 2000
[Termes IGN] Vienne (capitale Autriche)Résumé : (auteur) Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring. Numéro de notice : A2023-128 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103131 Date de publication en ligne : 12/01/2023 En ligne : https://doi.org/10.1016/j.jag.2022.103131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102512
in International journal of applied Earth observation and geoinformation > vol 117 (March 2023) . - n° 103131[article]Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network / Jingan Wu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network Type de document : Article/Communication Auteurs : Jingan Wu, Auteur ; Liupeng Lin, Auteur ; Chi Zhang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 16 - 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] approche hiérarchique
[Termes IGN] bande spectrale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] filtre passe-haut
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image Sentinel-MSIRésumé : (Auteur) Earth observations from the Sentinel-2 mission have been extensively accepted in a variety of land services. The thirteen spectral bands of Sentinel-2, however, are collected at three spatial resolutions of 10/20/60 m, and such a difference brings difficulties to analyze multispectral imagery at a uniform resolution. To address this problem, we developed a hierarchical fusion network (HFN) to sharpen 20/60-m bands and generate Sentinel-2 all-band 10-m data. The deep learning architecture is used to learn the complex mapping between multi-resolution input and output data. Given the deficiency of previous studies in which the spatial information is inferred only from the fine-resolution bands, the proposed hierarchical fusion framework simultaneously leverages the self-similarity information from coarse-resolution bands and the spatial structure information from fine-resolution bands, to enhance the sharpening performance. Technically, the coarse-resolution bands are super-resolved by exploiting the information from themselves and then sharpened by fusing with the fine-resolution bands. Both 20-m and 60-m bands can be sharpened via the developed approach. Experimental results regarding visual comparison and quantitative assessment demonstrate that HFN outperforms the other benchmarking models, including pan-sharpening-based, model-based, geostatistical-based, and other deep-learning-based approaches, showing remarkable performance in reproducing explicit spatial details and maintaining original spectral features. Moreover, the developed model works more effectively than the other models over the heterogeneous landscape, which is usually considered a challenging application scenario. To sum up, the fusion model can sharpen Sentinel-2 20/60-m bands, and the created all-band 10-m data allows image analysis and geoscience applications to be authentically carried out at the 10-m resolution. Numéro de notice : A2023-063 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.017 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.017 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102392
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 16 - 31[article]Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models Type de document : Article/Communication Auteurs : Xikun Hu, Auteur ; Puzhao Zhang, Auteur ; Yifang Ban, Auteur Année de publication : 2023 Article en page(s) : pp 228 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dommage
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] jeu de données localisées
[Termes IGN] segmentation sémantique
[Termes IGN] surveillance forestière
[Termes IGN] zone sinistréeRésumé : (auteur) Nowadays Earth observation satellites provide forest fire authorities and resource managers with spatial and comprehensive information for fire stabilization and recovery. Burn severity mapping is typically performed by classifying bi-temporal indices (e.g., dNBR, and RdNBR) using thresholds derived from parametric models incorporating field-based measurements. Analysts are currently expending considerable manual effort using prior knowledge and visual inspection to determine burn severity thresholds. In this study, we aim to employ highly automated approaches to provide spatially explicit damage level estimates. We first reorganize a large-scale Landsat-based bi-temporal burn severity assessment dataset (Landsat-BSA) by visual data cleaning based on annotated MTBS data (approximately 1000 major fire events in the United States). Then we apply state-of-the-art deep learning (DL) based methods to map burn severity based on the Landsat-BSA dataset. Experimental results emphasize that multi-class semantic segmentation algorithms can approximate the threshold-based techniques used extensively for burn severity classification. UNet-like models outperform other region-based CNN and Transformer-based models and achieve accurate pixel-wise classification results. Combined with the online hard example mining algorithm to reduce class imbalance issue, Attention UNet achieves the highest mIoU (0.78) and the highest Kappa coefficient close to 0.90. The bi-temporal inputs with ancillary spectral indices work much better than the uni-temporal multispectral inputs. The restructured dataset will be publicly available and create opportunities for further advances in remote sensing and wildfire communities. Numéro de notice : A2023-122 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.026 Date de publication en ligne : 11/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102498
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 228 - 240[article]Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 38 n° inconnu ([01/01/2023])
![]()
[article]
Titre : Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis Type de document : Article/Communication Auteurs : Haifa Tamiminia, Auteur ; Bahram Salehi, Auteur ; Masoud Mahdianpari, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse aérienne
[Termes IGN] boosting adapté
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification pixellaire
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] réserve naturelleRésumé : (auteur) Forest above-ground biomass (AGB) estimation provides valuable information about the carbon cycle. Thus, the overall goal of this paper is to present an approach to enhance the accuracy of the AGB estimation. The main objectives are to: 1) investigate the performance of remote sensing data sources, including airborne light detection and ranging (LiDAR), optical, SAR, and their combination to improve the AGB predictions, 2) examine the capability of tree-based machine learning models, and 3) compare the performance of pixel-based and object-based image analysis (OBIA). To investigate the performance of machine learning models, multiple tree-based algorithms were fitted to predictors derived from airborne LiDAR data, Landsat, Sentinel-2, Sentinel-1, and PALSAR-2/PALSAR SAR data collected within New York’s Adirondack Park. Combining remote sensing data from multiple sources improved the model accuracy (RMSE: 52.14 Mg ha−1 and R2: 0.49). There was no significant difference among gradient boosting machine (GBM), random forest (RF), and extreme gradient boosting (XGBoost) models. In addition, pixel-based and object-based models were compared using the airborne LiDAR-derived AGB raster as a training/testing sample. The OBIA provided the best results with the RMSE of 33.77 Mg ha−1 and R2 of 0.81 for the combination of optical and SAR data in the GBM model. Numéro de notice : A2022-331 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2071475 Date de publication en ligne : 27/04/2022 En ligne : https://doi.org/10.1080/10106049.2022.2071475 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100607
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Estimating mangrove above-ground biomass at Maowei Sea, Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data / Zhuomei Huang in Geocarto international, vol 38 n° inconnu ([01/01/2023])
![]()
[article]
Titre : Estimating mangrove above-ground biomass at Maowei Sea, Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data Type de document : Article/Communication Auteurs : Zhuomei Huang, Auteur ; Yichao Tian, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Chine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] mangrove
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) Blue carbon ecosystems such as mangroves are natural barriers to resisting and alleviating the impact of storm surges and extreme catastrophic weather. Accurate and efficient determination of the aboveground biomass of mangroves is of great importance for the protection and restoration of blue carbon ecosystems and their response to climate change. This study proposes a light gradient boosting model (LGBM) based on particle swarm optimization (PSO) algorithm for feature selection. We constructed and verified the proposed model using 227 quadrat datasets from a field survey and Sentinel-1 and Sentinel-2 data. The determination coefficient (R2) and root-mean-square error (RMSE) were used to evaluate the performance of the model. Compared with random forest(RF), K-nearest neighbourhood regression(KNNR), extreme gradient boosting(XGBR), LGBM, and other machine learning algorithms, the LGBM-PSO model achieves better results (R2 = 0.7807, RMSE = 24.6864 Mg·ha−1), The predicted range of mangrove biomass is 4.623–206.975 Mg·ha−1. Therefore, the use of multisource remote sensing data combined with the LGBM-PSO model can provide better prediction results of aboveground biomass of mangroves, thereby providing a new method for estimating the aboveground biomass of large-scale mangroves. Numéro de notice : A2022-621 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2102226 Date de publication en ligne : 22/07/2022 En ligne : https://doi.org/10.1080/10106049.2022.2102226 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101356
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)
PermalinkMachine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami / Riantini Virtriana in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
PermalinkA new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing / Yali Zhang in GIScience and remote sensing, vol 60 n° 1 (2023)
PermalinkUsing Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: a Sri Lanka case study / W.D.K.V. Nandasena in Geocarto international, vol 38 n° inconnu ([01/01/2023])
PermalinkAutomatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery / Yuxin Wang in Science of the total environment, vol 853 (December 2022)
PermalinkBathymetry and benthic habitat mapping in shallow waters from Sentinel-2A imagery: A case study in Xisha islands, China / Wei Huang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 12 (December 2022)
PermalinkA deep learning framework based on generative adversarial networks and vision transformer for complex wetland classification using limited training samples / Ali Jamali in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
PermalinkDiscriminating pure Tamarix species and their putative hybrids using field spectrometer / Solomon G. Tesfamichael in Geocarto international, vol 37 n° 25 ([01/12/2022])
PermalinkEstimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine / Xingwen Lin in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
PermalinkExtracting built-up land area of airports in China using Sentinel-2 imagery through deep learning / Fanxuan Zeng in Geocarto international, vol 37 n° 25 ([01/12/2022])
Permalink