Descripteur
Documents disponibles dans cette catégorie (30)



Etendre la recherche sur niveau(x) vers le bas
Discriminating pure Tamarix species and their putative hybrids using field spectrometer / Solomon G. Tesfamichael in Geocarto international, vol 37 n° 25 ([01/12/2022])
![]()
[article]
Titre : Discriminating pure Tamarix species and their putative hybrids using field spectrometer Type de document : Article/Communication Auteurs : Solomon G. Tesfamichael, Auteur ; Solomon W. Newete, Auteur ; Elhadi Adam, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7733 - 7752 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique du sud (état)
[Termes IGN] apprentissage automatique
[Termes IGN] canopée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] espèce exotique envahissante
[Termes IGN] essence indigène
[Termes IGN] Extreme Gradient Machine
[Termes IGN] feuille (végétation)
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image Worldview
[Termes IGN] spectroradiomètre
[Termes IGN] Tamarix (genre)Résumé : (auteur) South Africa is home to a native Tamarix species, while two were introduced in the early 1900s to mitigate the effects of mining on soil. The introduced species have spread to other ecosystems resulting in ecological deteriorations. The problem is compounded by hybridization of the species making identification between the native and exotic species difficult. This study investigated the potential of remote sensing in identifying native, non-native and hybrid Tamarix species recorded in South Africa. Leaf- and canopy-level classifications of the species were conducted using field spectroradiometer data that provided two inputs: original hyperspectral data and bands simulated according to Landsat-8, Sentinel-2, SPOT-6 and WorldView-3. The original hyperspectral data yielded high accuracies for leaf- and plot-level discriminations (>90%), while promising accuracies were also obtained using Landsat-8, Sentinel-2 and Worldview-3 simulations (>75%). These findings encourage for investigating the performance of actual space-borne multispectral data in classifying the species. Numéro de notice : A2022-928 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1983033 Date de publication en ligne : 27/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1983033 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102661
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7733 - 7752[article]Monitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon / Le Bienfaiteur Sagang Takougoum (2022)
![]()
Titre : Monitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon Type de document : Thèse/HDR Auteurs : Le Bienfaiteur Sagang Takougoum, Auteur ; Bonaventure Sonké, Directeur de thèse ; Nicolas Barbier, Directeur de thèse Editeur : Yaoundé : Université de Yaoundé Année de publication : 2022 Importance : 166 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l'Université de Yaoundé 1, Spécialité Botanique-EcologieLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Cameroun
[Termes IGN] carte d'utilisation du sol
[Termes IGN] carte de la végétation
[Termes IGN] classification dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] dynamique de la végétation
[Termes IGN] écotone
[Termes IGN] flore locale
[Termes IGN] forêt
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] incendie de forêt
[Termes IGN] modèle statistique
[Termes IGN] savane
[Termes IGN] surveillance forestièreIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Understanding the effects of global change (combining anthropic and climatic pressures) on biome distribution needs innovative approaches allowing to address the large spatial scales involved and the scarcity of available ground data. Characterizing vegetation dynamics at landscape to regional scale requires both a high level of spatial detail (resolution), generally obtained through precise field measurements, and a sufficient coverage of the land surface (extent) provided by satellite images. The difficulty usually lies between these two scales as both signal saturation from satellite data and ground sampling limitations contribute to inaccurate extrapolations. Airborne laser scanning (ALS) data has revolutionized the trade-off between spatial detail and landscape coverage as it gives accurate information of the vegetation’s structure over large areas which can be used to calibrate satellite data. Also recent satellite data of improved spectral and spatial resolutions (Sentinel 2) allow for detailed characterizations of compositional gradients in the vegetation, notably in terms of the abundance of broad functional/optical plant types. Another major obstacle comes from the lack of a temporal perspective on dynamics and disturbances. Growing satellite imagery archives over several decades (45 years; Landsat) and available computing facilities such as Google Earth Engine (GEE) provide new possibilities to track long term successional trajectories and detect significant disturbances (i.e. fire) at a fine spatial detail (30m) and relate them to the current structure and composition of the vegetation. With these game changing tools our objective was to track long-term dynamics of forest-savanna ecotone in the Guineo-Congolian transition area of the Central Region of Cameroon with induced changes in the vegetatio structure and composition within two contrasted scenarios of anthropogenic pressures: 1) the Nachtigal area which is targeted for the dam construction and subject to intense agricultural activities and 2) the Mpem et Djim National Park (MDNP) which has no management plan. The maximum likelihood classification of the Spot 6/7 image aided with the information from the canopy height derived from ALS data discriminated the vegetation types within the Nachtigal area with good accuracy (96.5%). Using field plots data in upscaling aboveground biomass (AGB) form field plots estimates to the satellite estimates with model-based approaches lead to a systematic overestimation in AGB density estimates and a root mean squared prediction error (RMSPE) of up to 65 Mg.ha−1 (90%), whereas calibration with ALS data (AGBALS) lead to low bias and a drop of ~30% in RMSPE (down to 43 Mg.ha−1, 58%) with little effect of the satellite sensor used. However, these results also confirm that, whatever the spectral indices used and attention paid to sensor quality and pre-processing, the signal is not sufficient to warrant accurate pixel wise predictions, because of large relative RMSPE, especially above (200–250 Mg.ha−1). The design-based approach, for which average AGB density values were attributed to mapped land cover classes, proved to be a simple and reliable alternative (for landscape to region level estimations), when trained with dense ALS samples. AGB and species diversity measured within 74 field inventory plots (distributed along a savanna to forest successional gradient) were higher for the vegetation located in the MDNP compared to their pairs in the Nachtigal area. The automated unsupervised long-term (45 years) land cover change monitoring from Landsat image archives based on GEE captured a consistent and regular pattern of forest progression into savanna at an average rate of 1% (ca. 6 km².year-1). No fire occurrence was captured for savanna that transited to forest within five years of monitoring. Distinct assemblages of spectral species are apparent in forest vegetation which is consistent with the age of transition. As forest gets older AGBALS recovers at a rate of 4.3 Mg.ha-1.year-1 in young forest stands ( Note de contenu : Chapter 1. Generalities
1.1 Introduction
1.2 Literature Review
Chapter 2. Material And Methods
2.1 Material
2.2 Methods
Chapter 3. Results And Discussion
3.1 Results
3.2 Discussion
Chapter 4. Conclusion And Perspectives
4.1 Conclusion
4.2 PerspectivesNuméro de notice : 26820 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Thèse étrangère Note de thèse : Thèse de doctorat : Botanique-Ecologie : Yaoundé : 2022 Organisme de stage : Institut de Recherche pour le Développement IRD nature-HAL : Thèse DOI : sans Date de publication en ligne : 13/04/2022 En ligne : https://hal.inrae.fr/tel-03528875/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100465 SRP, une base de calage 3D de très haute précision sur le continent africain / Laure Chandelier in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)
![]()
[article]
Titre : SRP, une base de calage 3D de très haute précision sur le continent africain Type de document : Article/Communication Auteurs : Laure Chandelier , Auteur ; Laurent Coeurdevey, Auteur ; Pascal Favé, Auteur ; Alexis Barot, Auteur ; Mathilde Jaussaud, Auteur
Année de publication : 2021 Article en page(s) : pp 129 - 142 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique (géographie politique)
[Termes IGN] base de données localisées
[Termes IGN] Cap-Vert
[Termes IGN] contrôle qualité
[Termes IGN] données localisées 3D
[Termes IGN] image Pléiades-Neo
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] Marrakech
[Termes IGN] Nigéria
[Termes IGN] point d'appui
[Termes IGN] précision métrique
[Termes IGN] prototype
[Termes IGN] recalage d'imageRésumé : (Auteur) La SRP (« Space Reference Points ») est une base mondiale, précise, dense et homogène de points 3D géoréférencés qui est réalisée à partir de l’archive d’images SPOT6/7. Ce projet, mené en partenariat entre l’Institut national de l’information géographique et forestière (IGN) et Airbus Defense and Space (ADS), permet le calage géométrique automatique d’images très haute résolution avec une précision de l’ordre de 3m partout dans le monde. La SRP sur l’Afrique a été produite au cours de l’année 2019. Les contrôles qualité confirment le respect des spécifications attendues pour ce produit. Les particularités des paysages rencontrés sur ce continent ont conduit à intégrer de nouvelles fonctionnalités à la chaîne de production. Tout d’abord, la sélection des images SPOT6/7 a été enrichie sur la zone intertropicale en prenant en compte les masques de nuage fournis avec les produits, permettant d’obtenir une densité de points SRP optimale pour la zone. Ensuite, un prototype de socle de calage exploitant des ortho-images Sentinel-2 a montré la capacité de cette méthodologie à assurer la spécification de localisation à 3m sur un archipel d’îles (ici le Cap Vert). Afin de valider pleinement le produit, l’article présente deux tests d’exploitation sur le Nigéria pour des productions 2D et sur la ville de Marrakech pour des productions 3D. Ils démontrent la capacité de la SRP à caler différents types d’images et à atteindre la cible de précision de la base. La SRP est destinée, dès 2021, à assurer le calage d’images dans différents projets et notamment, de façon massive, dans le segment sol Pléiades Neo. Numéro de notice : A2021-668 Affiliation des auteurs : IGN+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.52638/rfpt.2021.569 Date de publication en ligne : 12/10/2021 En ligne : https://doi.org/10.52638/rfpt.2021.569 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98765
in Revue Française de Photogrammétrie et de Télédétection > n° 223 (mars - décembre 2021) . - pp 129 - 142[article]Applications of remote sensing data in mapping of forest growing stock and biomass / Jose Aranha (2021)
![]()
Titre : Applications of remote sensing data in mapping of forest growing stock and biomass Type de document : Monographie Auteurs : Jose Aranha, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 276 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-0365-0569-5 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] biomasse aérienne
[Termes IGN] capital sur pied
[Termes IGN] carte forestière
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] foresterie
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-OLI
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Pinus massoniana
[Termes IGN] puits de carbone
[Termes IGN] service écosystémique
[Termes IGN] système d'information géographique
[Termes IGN] ThaïlandeRésumé : (éditeur) This Special Issue (SI), entitled "Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass”, resulted from 13 peer-reviewed papers dedicated to Forestry and Biomass mapping, characterization and accounting. The papers' authors presented improvements in Remote Sensing processing techniques on satellite images, drone-acquired images and LiDAR images, both aerial and terrestrial. Regarding the images’ classification models, all authors presented supervised methods, such as Random Forest, complemented by GIS routines and biophysical variables measured on the field, which were properly georeferenced. The achieved results enable the statement that remote imagery could be successfully used as a data source for regression analysis and formulation and, in this way, used in forestry actions such as canopy structure analysis and mapping, or to estimate biomass. This collection of papers, presented in the form of a book, brings together 13 articles covering various forest issues and issues in forest biomass calculation, constituting an important work manual for those who use mixed GIS and RS techniques. Note de contenu : 1- Finer resolution estimation and mapping of mangrove biomass using UAV LiDAR and WorldView-2 data
2- Nondestructive estimation of the above-ground biomass of multiple tree species in boreal forests of China using Terrestrial Laser Scanning
3- Estimating forest aboveground carbon storage in Hang-Jia-Hu using Landsat TM/OLI data and random morest Model
4- Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms
5- Comparative analysis of seasonal Landsat 8 images for forest aboveground biomass estimation in a subtropical forest
6- Estimating urban vegetation biomass from Sentinel-2A image data
7- Estimation of forest biomass in Beijing (China) using multisource remote sensing and forest inventory data
8- Spatially explicit analysis of trade-offs and synergies among multiple ecosystem services in Shaanxi Valley basin
9- Influence of site-specific conditions on estimation of forest above ground biomass from airborne laser scanning
10- Multi-sensor prediction of stand volume by a hybrid model of support vector machine for regression kriging
11- Applying LiDAR to quantify the plant area index along a successional gradient in a tropical forest of Thailand
12- Shrub biomass estimates in former burnt areas using Sentinel 2 images processing and classification
13- Evaluation of different algorithms for estimating the growing stock volume of pinus massoniana plantations using spectral and spatial information from a SPOT6 imageNuméro de notice : 15305 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-0569-5 En ligne : https://doi.org/10.3390/books978-3-0365-0569-5 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99903 Apports des méthodes d'apprentissage profond pour la reconnaissance automatique des modes d'occupation des sols et d'objets par télédétection en milieu tropical / Guillaume Rousset (2021)
![]()
Titre : Apports des méthodes d'apprentissage profond pour la reconnaissance automatique des modes d'occupation des sols et d'objets par télédétection en milieu tropical Type de document : Thèse/HDR Auteurs : Guillaume Rousset, Auteur ; Dominique Simpelaere, Directeur de thèse ; M. Mangeas, Directeur de thèse Editeur : Nouméa : Université de Nouvelle-Calédonie Année de publication : 2021 Importance : 180 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur délivré par l’Université de Nouvelle-Calédonie, Discipline InformatiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Arecaceae
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] détection de changement
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image à très haute résolution
[Termes IGN] image Pléiades
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] indice de végétation
[Termes IGN] milieu tropical
[Termes IGN] mode d'occupation du sol
[Termes IGN] modèle de transfert radiatif
[Termes IGN] Nouvelle-Calédonie
[Termes IGN] Para (Brésil)
[Termes IGN] utilisation du solIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Le paysage néo-calédonien change rapidement avec le développement de nouveaux projets miniers, l'intensification de l’urbanisation et les impacts d'événements climatiques extrêmes comme les cyclones. Avec la démocratisation et l’accumulation des données satellite et l'avènement des méthodes d'intelligence artificielle, la mise en place de méthodes automatiques de détection devient un outil incontournable pour documenter et surveiller ces changements à l’échelle du territoire de façon régulière, rapide et objective. Parmi ces méthodes, l'apprentissage profond a montré des résultats performants sur des problématiques complexes, notamment sur le traitement d'images à l'aide de ces réseaux de neurones denses convolutionnels. En tenant compte des contraintes liées au traitement de l'imagerie satellite et des problèmes liés aux algorithmes d'apprentissage, l'objectif de la thèse est multiple : contribuer à l'adaptation des techniques d'apprentissage profond à des problématiques de télédétection sur plusieurs points clés de la chaîne de traitement ; estimer les performances de ces techniques par rapport aux méthodes communément utilisées dans le domaine de la télédétection ; et développer des méthodes automatiques de détection pour délivrer des indices fiables à toute exploitation d'une imagerie satellitaire. Cette thèse s'est concentrée sur trois applications : 1) la détection de la couverture et de l'usage des sols sur des données à très haute résolution ; 2) la détection de la couverture des sols en Nouvelle-Calédonie à une fréquence annuelle sur des données à haute résolution ; 3) et la détection de palmiers dans la région Pará du Brésil à l'aide de données simulées informatiquement. Pour la première application, un jeu de données de référence basé sur les données du satellite SPOT 6 a été créé manuellement et mis à disposition de la communauté scientifique pour comparer les techniques de détection des classes d'occupation des sols en milieu tropical insulaire. Les réseaux de neurones denses affichent de meilleures performances notamment dans le cadre de la détection de l'usage des sols qui nécessite un niveau plus élevé de conceptualisation de l'environnement. Pour la deuxième application, une chaîne de détection automatique de la couverture des sols, basée sur un réseau de neurones dense alimenté par des données Sentinel-2, a été réalisée. Ces couvertures sont comparées aux couvertures obtenues par des méthodes semi-automatiques en province Sud de la Nouvelle-Calédonie. Le modèle offre des performances égales sur quelques zones tests, mais des données terrain supplémentaires sont requises pour conforter la fiabilité sur l'ensemble du territoire néo-calédonien. Enfin, pour la dernière application, l'originalité du travail de recherche a consisté à tester l'apport dans la base d'apprentissage d'images satellites de synthèse. Pour cela des images du palmier ont été construites à partir d'un modèle de transfert radiatif. L'utilisation de ces images de synthèse en complément des images Pléiades a permis d'améliorer significativement la précision globale des modèles. Note de contenu : 1- Introduction
2- Le deep learning
3- Classification des occupations du sol
4- Vers une détection de changement du sol
5- Détection du Babaçu au Brésil
6- Conclusion et perspectivesNuméro de notice : 15277 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Nouvelle-Calédonie : 2021 Organisme de stage : Institut de Recherche pour le Développement IRD DOI : sans En ligne : http://www.theses.fr/2021NCAL0006 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101100 A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations / Laure Chandelier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
PermalinkMangrove forest classification and aboveground biomass estimation using an atom search algorithm and adaptive neuro-fuzzy inference system / Minh Hai Pham in Plos one, vol 15 n° 5 (May 2020)
PermalinkMulti-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms in Malawi / Brad G. Peter in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 2 (February 2020)
PermalinkEtudes des dynamiques spatiales d’évolution de l’occupation et de l’utilisation des sols dans la fenêtre lacustre camerounaise du lac Tchad et son arrière-pays à partir des grandes sécheresses sahéliennes de 1970 / Paul Gérard Gbetkom (2020)
PermalinkVers une occupation du sol France entière par imagerie satellite à très haute résolution / Tristan Postadjian (2020)
PermalinkMultimodal scene understanding: algorithms, applications and deep learning, ch. 11. Decision fusion of remote-sensing data for land cover classification / Arnaud Le Bris (2019)
PermalinkUrban morpho-types classification from SPOT-6/7 imagery and Sentinel-2 time series / Arnaud Le Bris (2019)
PermalinkUtilisation de données Sentinel-2 et SPOT 6/7 pour la classification de l’occupation du sol / Olivier Stocker (2019)
PermalinkClassification à très large échelle d’images satellites à très haute résolution spatiale par réseaux de neurones convolutifs / Tristan Postadjian in Revue Française de Photogrammétrie et de Télédétection, n° 217-218 (juin - septembre 2018)
PermalinkFusion tardive d’images SPOT 6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine / Cyril Wendl in Revue Française de Photogrammétrie et de Télédétection, n° 217-218 (juin - septembre 2018)
Permalink