Descripteur
Termes IGN > géomatique > infrastructure mondiale des données localisées > qualité des données > incertitude des données
incertitude des donnéesVoir aussi |
Documents disponibles dans cette catégorie (188)



Etendre la recherche sur niveau(x) vers le bas
Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density / Luyen K. Bui in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
![]()
[article]
Titre : Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density Type de document : Article/Communication Auteurs : Luyen K. Bui, Auteur ; Craig L. Glennie, Auteur Année de publication : 2023 Article en page(s) : n° 100028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Hawaii (Etats-Unis)
[Termes IGN] incertitude des données
[Termes IGN] interpolation
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Light detection and ranging (lidar) scanning systems can be used to provide a point cloud with high quality and point density. Gridded digital elevation models (DEMs) interpolated from laser scanning point clouds are widely used due to their convenience, however, DEM uncertainty is rarely provided. This paper proposes an end-to-end workflow to quantify the uncertainty (i.e., standard deviation) of a gridded lidar-derived DEM. A benefit of the proposed approach is that it does not require independent validation data measured by alternative means. The input point cloud requires per point uncertainty which is derived from lidar system observational uncertainty. The propagated uncertainty caused by interpolation is then derived by the general law of propagation of variances (GLOPOV) with simultaneous consideration of both horizontal and vertical point cloud uncertainties. Finally, the interpolated uncertainty is then scaled by point density and a measure of terrain roughness to arrive at the final gridded DEM uncertainty. The proposed approach is tested with two lidar datasets measured in Waikoloa, Hawaii, and Sitka, Alaska. Triangulated irregular network (TIN) interpolation is chosen as the representative gridding approach. The results indicate estimated terrain roughness/point density scale factors ranging between 1 (in flat areas) and 7.6 (in high roughness areas), with a mean value of 2.3 for the Waikoloa dataset and between 1 and 9.2 with a mean value of 1.2 for the Sitka dataset. As a result, the final gridded DEM uncertainties are estimated between 0.059 m and 0.677 m with a mean value of 0.164 m for the Waikoloa dataset and between 0.059 m and 1.723 m with a mean value of 0.097 m for the Sitka dataset. Numéro de notice : A2023-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100028 Date de publication en ligne : 17/12/2023 En ligne : https://doi.org/10.1016/j.ophoto.2022.100028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102494
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 7 (January 2023) . - n° 100028[article]Comparison of methods for the automatic classification of forest habitat types in the Southern Alps : Application to ecological data from the French national forest inventory / Charlotte Labit in Biodiversity & Conservation, vol 31 n° 13-14 (December 2022)
![]()
[article]
Titre : Comparison of methods for the automatic classification of forest habitat types in the Southern Alps : Application to ecological data from the French national forest inventory Type de document : Article/Communication Auteurs : Charlotte Labit, Auteur ; Ingrid Bonhême , Auteur ; Sébastien Delhaye
, Auteur
Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : pp 3257 - 3283 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Alpes-de-haute-provence (04)
[Termes IGN] Alpes-maritimes (06)
[Termes IGN] analyse comparative
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Drôme (26)
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] incertitude des données
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] surveillance écologique
[Vedettes matières IGN] Inventaire forestierMots-clés libres : algorithm inspired by the habitat identification key used in the field Résumé : (auteur) The monitoring of habitats at plant association level, has been developed by the French-National Forest Inventory (NFI) progressively since 2011, whereas ecological and floristic data exist since the mid-1980s. The NFI habitat monitoring is the French tool of surveillance of forest habitats decreed by Natura 2000 Directive (article 11). Determination of plant association in NFI plots concerns all the habitats, whether they are of community interest or not. The objective of this study is to compare different methods of automatic classification of floristic and ecological surveys into forest habitat groups. Indeed, enriching the old surveys, which contain only ecological, floristic and trees data, with information on habitats would increase the accuracy of the calculated statistical results on habitats. The uncertainty of the attribution of a habitat outside the field (ex-situ) by experts was quantified by comparison with the determination in the field (in situ). This result was used as a benchmark to compare to the error rates obtained by two methods of automatic classification: an algorithm inspired by the habitat identification key used in the field and Random forest, a learning classification method. The classification performance was evaluated for three levels of habitat groupings. The results showed that the lower the level of clustering, the higher the error rate. Depending on the classification method used and the level of aggregation, the error rates varied between 5 and 15%. In all cases, the error rates were below the estimated uncertainty of the expert attribution of ex-situ habitat. Numéro de notice : A2022-696 Affiliation des auteurs : IGN+Ext (2020- ) Thématique : FORET/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10531-022-02487-6 Date de publication en ligne : 25/10/2022 En ligne : https://doi.org/10.1007/s10531-022-02487-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101980
in Biodiversity & Conservation > vol 31 n° 13-14 (December 2022) . - pp 3257 - 3283[article]There’s no best model! Addressing limitations of land-use scenario modelling through multi-model ensembles / Richard J. Hewitt in International journal of geographical information science IJGIS, vol 36 n° 12 (December 2022)
![]()
[article]
Titre : There’s no best model! Addressing limitations of land-use scenario modelling through multi-model ensembles Type de document : Article/Communication Auteurs : Richard J. Hewitt, Auteur ; Majid Shadman Roodposhti, Auteur ; Brett A. Bryan, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] automate cellulaire
[Termes IGN] étalonnage de modèle
[Termes IGN] étalonnage des données
[Termes IGN] incertitude des données
[Termes IGN] utilisation du solRésumé : (auteur) Cellular automata models are popular tools for exploring future land change pathways. But simulation modelling approaches often focus too narrowly on calibration against historic reference maps, limiting the diversity of possible outcomes. We argue that, contrary to what is commonly believed, there is no ‘best model’, and that model specification and calibration accuracy depend on the objective of the research. We propose a multi-model ensemble approach, in which a wide range of models and calibration rules sets are systematically tested against multiple metrics. We apply our approach to a case study in Spain. No single model performed well for all statistics, illustrating the danger of cherry-picking statistics for best performance. In our case study, accounting for historic land changes in model design was useful for simulating compact urban development, but limited the variability of simulation outcomes. The accessibility model driver improved urban pattern replication, while suitability without accessibility was useful for simulating low-density development encroaching on natural areas. Rather than abandoning calibrations that show low agreement with reference maps based on a small number of metrics we should seek to understand what each metric is telling us and use this information to enrich the diversity of simulated outcomes. Numéro de notice : A2022-616 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2098299 Date de publication en ligne : 03/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2098299 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101372
in International journal of geographical information science IJGIS > vol 36 n° 12 (December 2022)[article]An estimation method to reduce complete and partial nonresponse bias in forest inventory / James A. Westfall in European Journal of Forest Research, vol 141 n° 5 (October 2022)
![]()
[article]
Titre : An estimation method to reduce complete and partial nonresponse bias in forest inventory Type de document : Article/Communication Auteurs : James A. Westfall, Auteur Année de publication : 2022 Article en page(s) : pp 901 - 907 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] enquête
[Termes IGN] erreur systématique
[Termes IGN] estimateur
[Termes IGN] estimation statistique
[Termes IGN] Etats-Unis
[Termes IGN] incertitude des données
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de simulation
[Termes IGN] placette d'échantillonnage
[Termes IGN] post-stratification de données
[Termes IGN] propriété foncière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Survey practitioners commonly encounter various types of nonresponse and strive to implement methods that mitigate any resulting bias when reporting results. In national forest inventories (NFI), complete or partial nonresponse usually results from hazardous conditions or lack of plot access permission. While many factors may be related to nonresponse, the two primary factors in the NFI of the USA are public/private land ownership and office/field plot status. To ameliorate potential nonresponse bias, these factors should be accounted for in the estimation process. An estimation method is presented where response homogeneity groups (RHGs) account for differential nonresponse rates between forest/nonforest plots. In a post-stratified estimation context, ratio-to-size estimators are used in RHGs within post-strata to avoid potential bias in variance estimates arising from partial plot nonresponse. Combining RHGs within post-strata requires a complex variance estimator that includes four sources of uncertainty. Testing of the estimation method on a synthetic population showed the approach is essentially unbiased. Application to NFI data from 10 states in the USA consistently showed the RHG method produced state-level estimates of forestland area that were 0.1%–3.6% larger than the current post-stratified estimation procedure. It is suggested that these differences are indicative of the nonresponse bias present when plots having differential nonresponse rates are not accounted for. Numéro de notice : A2022-759 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1007/s10342-022-01480-6 Date de publication en ligne : 14/07/2022 En ligne : https://doi.org/10.1007/s10342-022-01480-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101770
in European Journal of Forest Research > vol 141 n° 5 (October 2022) . - pp 901 - 907[article]A general model for creating robust choropleth maps / Wangshu Mu in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : A general model for creating robust choropleth maps Type de document : Article/Communication Auteurs : Wangshu Mu, Auteur ; Daoqin Tong, Auteur Année de publication : 2022 Article en page(s) : n° 101850 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] carte choroplèthe
[Termes IGN] incertitude des données
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] méthode robuste
[Termes IGN] optimisation par essaim de particules
[Termes IGN] programmation dynamiqueRésumé : (auteur) Choropleth maps visualize areal geographical data by grouping data into a few map classes and assigning different colors, shades, or patterns. Recent studies show that data uncertainty, commonly observed in real-life applications, should also be accounted for when determining the best classification scheme. Due to data uncertainty, a few studies note that map units might be placed in a wrong class, and the concept of map robustness has been introduced to minimize such misplacement. Recently, an algorithm has been developed to integrate robustness into the design of the optimal map classification scheme. However, the existing algorithm has two limitations: first, it is only suitable for certain robustness metrics. Second, when identifying the optimal class breaks, the existing algorithm requires predefined candidate class break values, which might lead to sub-optimal solutions. This paper resolves these issues by proposing a new model, namely, the Continuous Robust Map Classification Problem (CRMCP), and the associated solution approach. The CRMCP allows mapmakers to customize robustness metrics according to their data and applications. In addition, a particle swarm optimization algorithm is developed to solve the CRMCP. The model and algorithm are tested using American Community Survey data. Test results suggest that the new approach can find better solutions than the existing algorithm. The study improves the usability of choropleth maps when uncertain geographical attributes are involved and allows spatial analysts and decision-makers to incorporate robustness into the mapmaking process more flexibly. Numéro de notice : A2022-514 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101850 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101850 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101055
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101850[article]Using multi-temporal tree inventory data in eucalypt forestry to benchmark global high-resolution canopy height models. A showcase in Mato Grosso, Brazil / Adrián Pascual in Ecological Informatics, vol 70 (September 2022)
PermalinkModeling and propagating inventory-based sampling uncertainty in the large-scale forest demographic model “MARGOT” / Timothée Audinot in Natural Resource Modelling, vol 35 n° 3 (August 2022)
PermalinkUncertainty interval estimates for computing slope and aspect from a gridded digital elevation model / Carlos López-Vázquez in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
PermalinkOutliers and uncertainties in GNSS ZTD estimates from double-difference processing and precise point positioning / Katarzyna Stępniak in GPS solutions, vol 26 n° 3 (July 2022)
PermalinkQuantifying the influence of plot-level uncertainty in above ground biomass up scaling using remote sensing data in central Indian dry deciduous forest / Thangavelu Mayamanikandan in Geocarto international, vol 37 n° 12 ([01/07/2022])
PermalinkObservational constraint on the climate sensitivity to atmospheric CO2 concentrations changes derived from the 1971-2017 global energy budget / Jonathan Chenal in Journal of climate, vol 2022 ([01/03/2022])
PermalinkOrthometric, normal and geoid heights in the context of the Brazilian altimetric network / Danilos Fernandes de Medeiros in Boletim de Ciências Geodésicas, vol 28 n° 1 ([01/03/2022])
PermalinkEvaluation de méthodes automatisées de cartographie des zones inondables adaptées à la prévision des crues soudaines / Nabil Hocini (2022)
PermalinkImpact of travel time uncertainties on modeling of spatial accessibility: a comparison of street data sources / Yan Lin in Cartography and Geographic Information Science, vol 48 n° 6 (October 2021)
PermalinkImaging the subsurface: How different visualizations of cross-sections affect the sense of uncertainty / Ane Bang-Kittilsen in Journal of Geovisualization and Spatial Analysis, vol 5 n° 1 (June 2021)
Permalink