Descripteur
Documents disponibles dans cette catégorie (18)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL) / Anchal Kumawat in The Visual Computer, vol 38 n° 11 (November 2022)
[article]
Titre : A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL) Type de document : Article/Communication Auteurs : Anchal Kumawat, Auteur ; Sucheta Panda, Auteur Année de publication : 2022 Article en page(s) : pp 3681 - 3702 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation d'image
[Termes IGN] base de données d'images
[Termes IGN] détection de contours
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Wiener
[Termes IGN] Inférence floue
[Termes IGN] logique floue
[Termes IGN] méthode robuste
[Termes IGN] restauration d'image
[Termes IGN] seuillage
[Termes IGN] superposition d'imagesRésumé : (auteur) The problem of edge detection plays a crucial role in almost all research areas of image processing. If edges are detected accurately, one can detect the location of objects and the parameters such as shape and area can be measured more precisely. In order to overcome the above problem, a feature-based image registration (FBIR) method in combination with an improved version of canny with fuzzy logic is proposed for accurate detection of edges. The major contributions of the present work are summarized in three steps. In the first step, a restoration-based enhancement algorithm is proposed to get a fine image from a distorted noisy image. In the second step, two versions of input images are registered using a modified FBIR approach. In the third step, to overcome the drawback of canny edge detection algorithm, each step of the algorithm is modified. The output is then fed to a “fuzzy inference system”. The “fuzzy rule-based technique”, when applied to the problem of “edge detection”, is very “efficient” because the thickness of the edges can be controlled by simply changing “rules and output parameters”. The domain of the images under consideration is various well-known image databases such as Berkeley and USC-SIPI databases, whereas the proposed method is also suitable for other types of both indoor and outdoor images. The robustness of the proposed method is analysed, compared and evaluated with seven image assessment quality (IAQ) parameters. The performance of the proposed method is compared with some of the state-of-the-art edge detection methods in terms of the seven IAQ parameters. Numéro de notice : A2022-839 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02196-1 Date de publication en ligne : 14/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02196-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102041
in The Visual Computer > vol 38 n° 11 (November 2022) . - pp 3681 - 3702[article]Change detection in street environments based on mobile laser scanning: A fuzzy spatial reasoning approach / Joachim Gehrung in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
[article]
Titre : Change detection in street environments based on mobile laser scanning: A fuzzy spatial reasoning approach Type de document : Article/Communication Auteurs : Joachim Gehrung, Auteur ; Marcus Hebel, Auteur ; Michael Arens, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection automatique
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] Inférence floue
[Termes IGN] information sémantique
[Termes IGN] logique floue
[Termes IGN] milieu urbain
[Termes IGN] représentation spatiale
[Termes IGN] semis de points
[Termes IGN] voxelRésumé : (auteur) Automated change detection based on urban mobile laser scanning data is the foundation for a whole range of applications such as building model updates, map generation for autonomous driving and natural disaster assessment. The challenge with mobile LiDAR data is that various sources of error, such as localization errors, lead to uncertainties and contradictions in the derived information. This paper presents an approach to automatic change detection using a new category of generic evidence grids that addresses the above problems. Said technique, referred to as fuzzy spatial reasoning, solves common problems of state-of-the-art evidence grids and also provides a method of inference utilizing fuzzy Boolean reasoning. Based on this, logical operations are used to determine changes and combine them with semantic information. A quantitative evaluation based on a hand-annotated version of the TUM-MLS data set shows that the proposed method is able to identify confirmed and changed elements of the environment with F1-scores of 0.93 and 0.89. Numéro de notice : A2022-663 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100019 En ligne : https://doi.org/10.1016/j.ophoto.2022.100019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101524
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 5 (August 2022) . - n° 100019[article]Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data / Saeideh Sahebi Vayghan in Geocarto international, vol 37 n° 10 ([01/06/2022])
[article]
Titre : Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data Type de document : Article/Communication Auteurs : Saeideh Sahebi Vayghan, Auteur ; Mohammad Salmani, Auteur ; Neda Ghasemkhanic, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2967 - 2995 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme génétique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection d'arbres
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] image aérienne
[Termes IGN] image optique
[Termes IGN] Inférence floue
[Termes IGN] morphologie mathématiqueRésumé : (auteur) One of the most important considerations in urban environments is the extraction of urban objects, with a high automation level. This study aims to present a new method which uses aerial images and LiDAR data to extract buildings and trees footprint in urban areas. In this study, high-elevation objects were extracted from the LiDAR data using the developed scan labeling method, and then the classification methods of Neural Networks (NN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Genetic Based K-Means algorithm (GBKMs) were used to separate buildings and trees and with the purpose of evaluating their performance. The features used for the classification were extracted from aerial images and LiDAR data, and the training data for the classification were selected automatically. Mathematical morphology functions were also used to process the classification results. The results show that NN and the ANFIS are more effective than the genetic-based K-Means algorithm in detecting small and large buildings. Numéro de notice : A2022-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1844311 En ligne : https://doi.org/10.1080/10106049.2020.1844311 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101300
in Geocarto international > vol 37 n° 10 [01/06/2022] . - pp 2967 - 2995[article]ART-RISK 3.0, a fuzzy-based platform that combine GIS and expert assessments for conservation strategies in cultural heritage / M. Moreno in Journal of Cultural Heritage, vol 55 (May - June 2022)
[article]
Titre : ART-RISK 3.0, a fuzzy-based platform that combine GIS and expert assessments for conservation strategies in cultural heritage Type de document : Article/Communication Auteurs : M. Moreno, Auteur ; R. Ortiz, Auteur ; D. Cagigas-Muñiz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 263 - 276 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse des risques
[Termes IGN] conservation du patrimoine
[Termes IGN] église
[Termes IGN] Espagne
[Termes IGN] gelée
[Termes IGN] Inférence floue
[Termes IGN] inondation
[Termes IGN] intelligence artificielle
[Termes IGN] logique floue
[Termes IGN] monument historique
[Termes IGN] patrimoine culturel
[Termes IGN] risque naturel
[Termes IGN] séisme
[Termes IGN] système d'information géographique
[Termes IGN] température de l'airRésumé : (auteur) Heritage preservation poses numerous difficulties, especially in emergency situations or during budget cuts. In these contexts, having tools that facilitate efficient and rapid management of hazards-vulnerabilities is a priority for the preventive conservation and triage of cultural assets. This paper presents the first (to the authors' knowledge) free and public availability Artificial Intelligence platform designed for conservation strategies in cultural heritage. Art-Risk 3.0 is a platform designed as a fuzzy-logic inference system that combines information from geographical information system maps with expert assessments, in order to identify the contextual threat level and the degree of vulnerability that heritage buildings present. Thanks to the possibilities that the geographic information system offers, 12 Spanish churches (11th - 16th centuries) were analyzed. The artificial intelligence platform developed makes it possible to analyze the index of hazard, vulnerability and functionality, classify buildings according to the risk in order to do a sustainable use of budgets through the rational management of preventive conservation. The data stored in the system allows identify the danger due to geotechnics, precipitation, torrential downpour, thermal oscillation, frost, earthquake and flooding. Through the use of fuzzy logic, the tool interrelates environmental conditions with 14 other variables related to structural risks and the vulnerability of buildings, which are evaluated through bibliographic search and review of photographic images. The geographic information system has identified torrential rains and thermal oscillations as the environmental threats that mostly impact heritage buildings in Spain. The results obtained highlight the Church of Santiago de Jesús as the most vulnerable building due to a lack of preventive conservation programs. These results, consistent with the inclusion of this monument on the list of heritage at risk defined by Hispania Nostra, corroborate the functionality of the model. Numéro de notice : A2022-472 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.culher.2022.03.012 Date de publication en ligne : 14/04/2022 En ligne : https://doi.org/10.1016/j.culher.2022.03.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100818
in Journal of Cultural Heritage > vol 55 (May - June 2022) . - pp 263 - 276[article]Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms / Marzieh Fadaee in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms Type de document : Article/Communication Auteurs : Marzieh Fadaee, Auteur ; Amin Mahdavi-Meymand, Auteur ; Mohammad Zounemat-Kermani, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 961 - 977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] algorithme génétique
[Termes IGN] analyse comparative
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] Inférence floue
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificiel
[Termes IGN] sédimentRésumé : (auteur) The present study investigates the capability of two metaheuristic optimization approaches, namely the Butterfly Optimization Algorithm (BOA) and the Genetic Algorithm (GA), integrated with machine learning models in Suspended Sediment Load (SSL) prediction. The Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), and Multiple Linear Regression (MLR) are applied as the predictive data-driven models. Independent input variables, i.e., the water temperature (T), river discharge (Q), and specific conductance (SC) are used for the prediction of SSL based on several statistical indices. The results indicate that the performances of all studied models were close to one another; moreover, the metaheuristic algorithms were found to increase the accuracy of the ANFIS and ANN models for approximately 11.73 percent and 4.30 percent, respectively. In general, the BOA outperformed the GA in enhancing the optimization performance of the learning process in the applied machine learning models. Numéro de notice : A2022-392 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1753821 Date de publication en ligne : 29/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1753821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100685
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 961 - 977[article]Modeling of precipitable water vapor from GPS observations using machine learning and tomography methods / Mir Reza Ghaffari Razin in Advances in space research, vol 69 n° 7 (April 2022)PermalinkSpatiotemporal analysis of precipitable water vapor using ANFIS and comparison against voxel-based tomography and radiosonde / Mir Reza Ghaffari Razin in GPS solutions, vol 26 n° 1 (January 2022)PermalinkIdentifying urban neighborhoods with higher potential for social investment using GIS-FIS approach / Hossein Aghajani in Applied geomatics, vol 13 n° 1 (May 2021)PermalinkApplication of fuzzy analytical hierarchy process for assessment of desertification sensitive areas in North West of Morocco / Hicham Ait Kacem in Geocarto international, vol 36 n° 5 ([15/03/2021])PermalinkIntelligent sensors for positioning, tracking, monitoring, navigation and smart sensing in smart cities / Li Tiancheng (2021)PermalinkBistatic specular scattering measurements for the estimation of rice crop growth variables using fuzzy inference system at X-, C-, and L-bands / Ajeet Kumar Vishwakarma in Geocarto international, vol 35 n° 13 ([01/10/2020])PermalinkMangrove forest classification and aboveground biomass estimation using an atom search algorithm and adaptive neuro-fuzzy inference system / Minh Hai Pham in Plos one, vol 15 n° 5 (May 2020)PermalinkWavelet-adaptive neural subtractive clustering fuzzy inference system to enhance low-cost and high-speed INS/GPS navigation system / Elahe S. Abdolkarimi in GPS solutions, vol 24 n° 2 (April 2020)PermalinkAutomated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)PermalinkPermalink