Descripteur
Documents disponibles dans cette catégorie (15)



Etendre la recherche sur niveau(x) vers le bas
ART-RISK 3.0, a fuzzy-based platform that combine GIS and expert assessments for conservation strategies in cultural heritage / M. Moreno in Journal of Cultural Heritage, vol 55 (May - June 2022)
![]()
[article]
Titre : ART-RISK 3.0, a fuzzy-based platform that combine GIS and expert assessments for conservation strategies in cultural heritage Type de document : Article/Communication Auteurs : M. Moreno, Auteur ; R. Ortiz, Auteur ; D. Cagigas-Muñiz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 263 - 276 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse des risques
[Termes IGN] conservation du patrimoine
[Termes IGN] église
[Termes IGN] Espagne
[Termes IGN] gelée
[Termes IGN] Inférence floue
[Termes IGN] inondation
[Termes IGN] intelligence artificielle
[Termes IGN] logique floue
[Termes IGN] monument historique
[Termes IGN] patrimoine culturel
[Termes IGN] risque naturel
[Termes IGN] séisme
[Termes IGN] système d'information géographique
[Termes IGN] température de l'airRésumé : (auteur) Heritage preservation poses numerous difficulties, especially in emergency situations or during budget cuts. In these contexts, having tools that facilitate efficient and rapid management of hazards-vulnerabilities is a priority for the preventive conservation and triage of cultural assets. This paper presents the first (to the authors' knowledge) free and public availability Artificial Intelligence platform designed for conservation strategies in cultural heritage. Art-Risk 3.0 is a platform designed as a fuzzy-logic inference system that combines information from geographical information system maps with expert assessments, in order to identify the contextual threat level and the degree of vulnerability that heritage buildings present. Thanks to the possibilities that the geographic information system offers, 12 Spanish churches (11th - 16th centuries) were analyzed. The artificial intelligence platform developed makes it possible to analyze the index of hazard, vulnerability and functionality, classify buildings according to the risk in order to do a sustainable use of budgets through the rational management of preventive conservation. The data stored in the system allows identify the danger due to geotechnics, precipitation, torrential downpour, thermal oscillation, frost, earthquake and flooding. Through the use of fuzzy logic, the tool interrelates environmental conditions with 14 other variables related to structural risks and the vulnerability of buildings, which are evaluated through bibliographic search and review of photographic images. The geographic information system has identified torrential rains and thermal oscillations as the environmental threats that mostly impact heritage buildings in Spain. The results obtained highlight the Church of Santiago de Jesús as the most vulnerable building due to a lack of preventive conservation programs. These results, consistent with the inclusion of this monument on the list of heritage at risk defined by Hispania Nostra, corroborate the functionality of the model. Numéro de notice : A2022-472 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.culher.2022.03.012 Date de publication en ligne : 14/04/2022 En ligne : https://doi.org/10.1016/j.culher.2022.03.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100818
in Journal of Cultural Heritage > vol 55 (May - June 2022) . - pp 263 - 276[article]Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms / Marzieh Fadaee in Geocarto international, vol 37 n° 4 (April 2022)
![]()
[article]
Titre : Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms Type de document : Article/Communication Auteurs : Marzieh Fadaee, Auteur ; Amin Mahdavi-Meymand, Auteur ; Mohammad Zounemat-Kermani, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 961 - 977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] algorithme génétique
[Termes IGN] analyse comparative
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] Inférence floue
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificiel
[Termes IGN] sédimentRésumé : (auteur) The present study investigates the capability of two metaheuristic optimization approaches, namely the Butterfly Optimization Algorithm (BOA) and the Genetic Algorithm (GA), integrated with machine learning models in Suspended Sediment Load (SSL) prediction. The Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), and Multiple Linear Regression (MLR) are applied as the predictive data-driven models. Independent input variables, i.e., the water temperature (T), river discharge (Q), and specific conductance (SC) are used for the prediction of SSL based on several statistical indices. The results indicate that the performances of all studied models were close to one another; moreover, the metaheuristic algorithms were found to increase the accuracy of the ANFIS and ANN models for approximately 11.73 percent and 4.30 percent, respectively. In general, the BOA outperformed the GA in enhancing the optimization performance of the learning process in the applied machine learning models. Numéro de notice : A2022-392 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1753821 Date de publication en ligne : 29/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1753821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100685
in Geocarto international > vol 37 n° 4 (April 2022) . - pp 961 - 977[article]Modeling of precipitable water vapor from GPS observations using machine learning and tomography methods / Mir Reza Ghaffari Razin in Advances in space research, vol 69 n° 7 (April 2022)
![]()
[article]
Titre : Modeling of precipitable water vapor from GPS observations using machine learning and tomography methods Type de document : Article/Communication Auteurs : Mir Reza Ghaffari Razin, Auteur ; Behzad Voosoghi, Auteur Année de publication : 2022 Article en page(s) : pp 2671 - 2681 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] algorithme génétique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Inférence floue
[Termes IGN] Iran
[Termes IGN] précipitation
[Termes IGN] radiosondage
[Termes IGN] réseau neuronal artificiel
[Termes IGN] retard hydrostatique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] tomographie par GPS
[Termes IGN] vapeur d'eau
[Termes IGN] voxelRésumé : (auteur) This paper studies the application of two machine learning methods to model precipitable water vapor (PWV) using observations of 23 GPS stations from the local GPS network of north-west of Iran in 2011. In a first step, the zenith tropospheric delay (ZTD) and zenith hydrostatic delay (ZHD) is calculated with the Bernese GNSS software and Saastamoinen model as revised by Davis, respectively. Then, by subtracting the ZHD from the ZTD, the zenith wet delay (ZWD) is obtained at each GPS station, for all times. In a second step, ZWD is modeled by two different machine learning methods, based on the latitude, longitude, DOY, time, relative humidity, temperature and pressure. After training a Support Vector Machine (SVM) and an Artificial Neural Network (ANN), ZWD temporal and spatial variations are estimated. Using the formula by Bevis, the ZWD can be converted to PWV at any time and space, for each machine learning method. The accuracy of the two new models is evaluated using control stations, exterior and radiosonde station, whose observations were not used in the training step. Also, all the results of the SVM and ANN are compared with a voxel-based tomography (VBT) model. In the control and exterior stations, ZWD estimated by the SVM (ZWDSVM) and ANN (ZWDANN) is compared with the ZWD obtained from the GPS (ZWDGPS). Also, in the control and exterior stations, precise point positioning (PPP) is used to evaluate the accuracy of the new models. In the radiosonde station, the PWV of the new models (PWVSVM, PWVANN) is compared with the radiosonde PWV (PWVradiosonde) and voxel-based PWV (PWVVBT). The averaged relative error of the SVM, ANN and VBT models in the control stations is 10.50%, 12.71% and 12.91%, respectively. For SVM, ANN and VBT models, the averaged RMSE at the control stations is 1.87 (mm), 2.22 (mm) and 2.29 (mm), respectively. Analysis of the results of PWV estimated by the SVM, ANN and VBT, as well as the surface precipitation obtained from meteorological stations, indicate the high accuracy of the SVM in comparison with the ANN and VBT model. In the results shown in this paper, the SVM has the best ability to accurately estimate ZWD and PWV, using local GPS network observations. Numéro de notice : A2022-446 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.asr.2022.01.003 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1016/j.asr.2022.01.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100106
in Advances in space research > vol 69 n° 7 (April 2022) . - pp 2671 - 2681[article]Spatiotemporal analysis of precipitable water vapor using ANFIS and comparison against voxel-based tomography and radiosonde / Mir Reza Ghaffari Razin in GPS solutions, vol 26 n° 1 (January 2022)
![]()
[article]
Titre : Spatiotemporal analysis of precipitable water vapor using ANFIS and comparison against voxel-based tomography and radiosonde Type de document : Article/Communication Auteurs : Mir Reza Ghaffari Razin, Auteur ; Samed Inyurt, Auteur Année de publication : 2022 Article en page(s) : n° 1 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Inférence floue
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précipitation
[Termes IGN] radiosondage
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station GPS
[Termes IGN] vapeur d'eau
[Termes IGN] voxelRésumé : (auteur) Water vapor (WV) is one of the most important parameters in meteorological studies. Using an adaptive neuro-fuzzy inference system (ANFIS), a new method has been proposed for spatiotemporal modeling of precipitable WV (PWV). In a first step, the tropospheric zenith wet delay (ZWD) is calculated using the observations of 23 GPS stations in the northwest of Iran. Out of these 23 stations, 21 stations for training and 2 stations for testing and validating were selected. The observations are for 15 days, ranging from day of year (DOY) 300 to 314 in 2011. The reason for choosing this area and time interval is the availability of a complete set of data. Then, the values of ZWD are converted to PWV. The PWV values obtained from this step are considered as the output of the ANFIS. Also, the latitude and longitude values of the GPS stations, the DOY, observational time (min), temperature (T), pressure (P), and relative humidity (RH) are considered input to ANFIS. The ANFIS network is trained using the back-propagation algorithm. After the training step, the PWV values are evaluated at 2 test stations, KLBR and GGSH, and at Tabriz radiosonde station (38.08° N, 46.28°E). For a more accurate evaluation, all the results of the new method are compared with the voxel-based tomography model. The evaluation of the results is performed using the relative error, standard deviation, correlation coefficient, and root-mean-square error (RMSE). Also, precise point positioning (PPP) is used to better evaluate the proposed model at test stations. The value of the correlation coefficient at the radiosonde station for the ANFIS and voxel is 0.90 and 0.87, respectively. Also, the minimum RMSE calculated for the ANFIS and voxel are 1.02 and 1.06 mm, respectively. In the PPP analysis, an improvement of about 4 mm is observed in the coordinates of the test stations using ANFIS. The results confirm the capability and high accuracy of the proposed model in determining the temporal and spatial variations of PWV. Numéro de notice : A2022-003 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01184-1 Date de publication en ligne : 19/10/2021 En ligne : https://doi.org/10.1007/s10291-021-01184-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98828
in GPS solutions > vol 26 n° 1 (January 2022) . - n° 1[article]Identifying urban neighborhoods with higher potential for social investment using GIS-FIS approach / Hossein Aghajani in Applied geomatics, vol 13 n° 1 (May 2021)
![]()
[article]
Titre : Identifying urban neighborhoods with higher potential for social investment using GIS-FIS approach Type de document : Article/Communication Auteurs : Hossein Aghajani, Auteur ; Ali Alizadeh-Zoeram, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse spatiale
[Termes IGN] ArcGIS
[Termes IGN] distribution spatiale
[Termes IGN] gestion urbaine
[Termes IGN] Inférence floue
[Termes IGN] Iran
[Termes IGN] Matlab
[Termes IGN] politique sociale
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] quartier
[Termes IGN] système d'information géographiqueRésumé : (auteur) Today, participation in social investment is a critical concern of urban management in metropolitan areas. To be effective in both public and private sectors, such participation requires an accurate knowledge of geographical distribution of resources and social needs in different parts of the city in order to better manage these investments. To this end, the present research aimed at providing an objective and tangible integrated approach to identify urban neighborhoods with high potential for social investment. The research area was neighborhoods located in Mashhad, Iran. Thirty-one criteria in three dimensions of empowerment, education, and culture were identified. Having determined, normalized, and weighted the values of each criteria in different neighborhoods using the analytic hierarchy process (AHP) method, the weight scores of each neighborhood in each dimension were added up by GIS approach and Arc GIS 10.1 software. Then, in order to conclude the overall status of social investment in different neighborhoods, a fuzzy inference system (FIS) was designed in the MATLAB 2014a environment according to experts’ opinions. Finally, based on the output of the designed system, the overall status of each neighborhood studied was determined in terms of social investment and neighborhoods with high potential for social investment were identified. The approach presented provides an insight for urban mangers, companies, and philanthropic investors to invest more effectively given the appropriate social investment opportunities. Numéro de notice : A2021-236 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s12518-020-00317-4 Date de publication en ligne : 27/05/2020 En ligne : https://doi.org/10.1007/s12518-020-00317-4 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97243
in Applied geomatics > vol 13 n° 1 (May 2021) . - pp 1 - 13[article]Application of fuzzy analytical hierarchy process for assessment of desertification sensitive areas in North West of Morocco / Hicham Ait Kacem in Geocarto international, vol 36 n° 5 ([15/03/2021])
PermalinkIntelligent sensors for positioning, tracking, monitoring, navigation and smart sensing in smart cities / Li Tiancheng (2021)
PermalinkBistatic specular scattering measurements for the estimation of rice crop growth variables using fuzzy inference system at X-, C-, and L-bands / Ajeet Kumar Vishwakarma in Geocarto international, vol 35 n° 13 ([01/10/2020])
PermalinkMangrove forest classification and aboveground biomass estimation using an atom search algorithm and adaptive neuro-fuzzy inference system / Minh Hai Pham in Plos one, vol 15 n° 5 (May 2020)
PermalinkWavelet-adaptive neural subtractive clustering fuzzy inference system to enhance low-cost and high-speed INS/GPS navigation system / Elahe S. Abdolkarimi in GPS solutions, vol 24 n° 2 (April 2020)
PermalinkAutomated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkPermalinkPermalinkSpatial distribution of coal quality parameters with respect to production requirements: an adaptive neuro-fuzzy application for the Can coal field (Turkey) / Ali Kayabasi in Geocarto international, vol 31 n° 1 - 2 (January - February 2016)
PermalinkFuzzy inference guided cellular automata urban-growth modelling using multi-temporal satellite images / S. Al-Kheder in International journal of geographical information science IJGIS, vol 22 n°11-12 (november 2008)
Permalink