Descripteur
Documents disponibles dans cette catégorie (93)



Etendre la recherche sur niveau(x) vers le bas
Summarizing large scale 3D mesh for urban navigation / Imeen Ben Salah in Robotics and autonomous systems, vol 152 (June 2022)
![]()
[article]
Titre : Summarizing large scale 3D mesh for urban navigation Type de document : Article/Communication Auteurs : Imeen Ben Salah, Auteur ; Sébastien Kramm, Auteur ; Cédric Demonceaux, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104037 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme ICP
[Termes IGN] carte en 3D
[Termes IGN] données lidar
[Termes IGN] entropie
[Termes IGN] image hémisphérique
[Termes IGN] image RVB
[Termes IGN] information sémantique
[Termes IGN] localisation basée vision
[Termes IGN] maillage
[Termes IGN] navigation autonome
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] précision radiométrique
[Termes IGN] profondeur
[Termes IGN] Rouen
[Termes IGN] saillance
[Termes IGN] zone urbaineRésumé : (auteur) Cameras have become increasingly common in vehicles, smartphones, and advanced driver assistance systems. The areas of application of these cameras in the world of intelligent transportation systems are becoming more and more varied: pedestrian detection, line crossing detection, navigation, …A major area of research currently focuses on mapping that is essential for localization and navigation. However, this step generates an important problem of memory management. Indeed, the memory space required to accommodate the map of a small city is measured in tens gigabytes. In addition, several providers today are competing to produce High-Definition (HD) maps. These maps offer a rich and detailed representation of the environment for highly accurate localization. However, they require a large storage capacity and high transmission and update costs. To overcome these problems, we propose a solution to summarize this type of map by reducing the size while maintaining the relevance of the data for navigation based on vision only. The summary consists in a set of spherical images augmented by depth and semantic information and allowing to keep the same level of visibility in every directions. These spheres are used as landmarks to offer guidance information to a distant agent. They then have to guarantee, at a lower cost, a good level of precision and speed during navigation. Some experiments on real data demonstrate the feasibility for obtaining a summarized map while maintaining a localization with interesting performances. Numéro de notice : A2022-290 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.robot.2022.104037 Date de publication en ligne : 03/02/2022 En ligne : https://doi.org/10.1016/j.robot.2022.104037 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100335
in Robotics and autonomous systems > vol 152 (June 2022) . - n° 104037[article]Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction / Jincai Huang in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction Type de document : Article/Communication Auteurs : Jincai Huang, Auteur ; Yunfei Zhang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 735 - 754 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Vedettes matières IGN] Géomatique
[Termes IGN] base de données routières
[Termes IGN] carrefour
[Termes IGN] carte routière
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données localisées des bénévoles
[Termes IGN] données routières
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] information sémantique
[Termes IGN] intégration de données
[Termes IGN] navigation automobile
[Termes IGN] vitesse
[Termes IGN] Wuhan (Chine)Résumé : (auteur) The road map is a fundamental part of a spatial data infrastructure (SDI), and is widely applied in navigation, smart transportation, and mobile location services. Recently, with the ubiquity of positioning devices, crowdsourced trajectories have become a significant data resource for road map construction and updating. However, existing trajectory-based methods mainly place emphasis on extracting road geometry features and may ignore continuous updating of road semantic information. Hence, we propose a divide-and-conquer method to construct a spatial-semantic road map by incorporating multiple data sources (e.g., crowdsourced trajectories and geo-tagged data). The proposed method divides road map construction into two sub-tasks, road structure reconstruction and road attributes inference. The road structure reconstruction process starts to partition raw trajectory data into different cliques of roadways and road intersections, and then extracts various targeted road structures by analyzing the turning modes in different trajectory cliques. The road attributes inference process aims to infer three pieces of crucial semantic information about road speeds, turning rules, and road names from crowdsourced trajectories and geo-tagged data. The case studies in Wuhan were examined to illustrate that the proposed method can construct a routable road map with enhanced geometric structures and rich semantic information, providing a beneficial data solution for car navigation and SDI update. Numéro de notice : A2022-364 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12879 Date de publication en ligne : 17/12/2021 En ligne : https://doi.org/10.1111/tgis.12879 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100583
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 735 - 754[article]A method of vision aided GNSS positioning using semantic information in complex urban environment / Rui Zhai in Remote sensing, vol 14 n° 4 (February-2 2022)
![]()
[article]
Titre : A method of vision aided GNSS positioning using semantic information in complex urban environment Type de document : Article/Communication Auteurs : Rui Zhai, Auteur ; Yunbin Yuan, Auteur Année de publication : 2022 Article en page(s) : n° 869 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] apprentissage profond
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] centrale inertielle
[Termes IGN] filtre de Kalman
[Termes IGN] GNSS assisté pour la navigation
[Termes IGN] information sémantique
[Termes IGN] milieu urbain
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GNSS
[Termes IGN] segmentation sémantique
[Termes IGN] système de numérisation mobile
[Termes IGN] vision par ordinateurRésumé : (auteur) High-precision localization through multi-sensor fusion has become a popular research direction in unmanned driving. However, most previous studies have performed optimally only in open-sky conditions; therefore, high-precision localization in complex urban environments required an urgent solution. The complex urban environments employed in this study include dynamic environments, which result in limited visual localization performance, and highly occluded environments, which yield limited global navigation satellite system (GNSS) performance. In order to provide high-precision localization in these environments, we propose a vision-aided GNSS positioning method using semantic information by integrating stereo cameras and GNSS into a loosely coupled navigation system. To suppress the effect of dynamic objects on visual positioning accuracy, we propose a dynamic-simultaneous localization and mapping (Dynamic-SLAM) algorithm to extract semantic information from images using a deep learning framework. For the GPS-challenged environment, we propose a semantic-based dynamic adaptive Kalman filtering fusion (S-AKF) algorithm to develop vision aided GNSS and achieve stable and high-precision positioning. Experiments were carried out in GNSS-challenged environments using the open-source KITTI dataset to evaluate the performance of the proposed algorithm. The results indicate that the dynamic-SLAM algorithm improved the performance of the visual localization algorithm and effectively suppressed the error spread of the visual localization algorithm. Additionally, after vision was integrated, the loosely-coupled navigation system achieved continuous high-accuracy positioning in GNSS-challenged environments. Numéro de notice : A2022-167 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.3390/rs14040869 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.3390/rs14040869 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99792
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 869[article]Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations / Ruozhen Cheng in Transactions in GIS, vol 26 n° 1 (February 2022)
![]()
[article]
Titre : Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations Type de document : Article/Communication Auteurs : Ruozhen Cheng, Auteur ; Jiaxin Liao, Auteur ; Jing Chen, Auteur Année de publication : 2022 Article en page(s) : pp 129 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] information sémantique
[Termes IGN] modèle d'ontologie
[Termes IGN] point d'intérêt
[Termes IGN] raisonnement spatial
[Termes IGN] relation spatiale
[Termes IGN] service fondé sur la position
[Termes IGN] similitude sémantiqueRésumé : (auteur) Locating points of interest (POIs) from descriptions can support intelligent location-based services. Available research achieves it through address matching and spatial reasoning. However, semantic characteristics and spatial proximities of address fields are usually neglected in address matching; current applications of spatial reasoning represent qualitative spatial relations in semantic networks for efficient queries, but they do not yet scale to large datasets for qualitative direction reasoning due to massive qualitative direction relations between objects; moreover, spatial reasoning on various quantitative distances should be optimized. This study proposes a method that improves the accuracy of address matching by combining multiple similarities and enables quick spatial reasoning through the faster relation retrieval of compact qualitative direction representations implemented on global equal latitude and longitude grids (ELLGs) and the ELLG-based quantitative calculations. The proposed method has been verified by two real-world datasets and proven to be efficient and accurate when locating POIs in large POI datasets from descriptions. Numéro de notice : A2022-177 Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12838 Date de publication en ligne : 06/09/2021 En ligne : https://doi.org/10.1111/tgis.12838 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99834
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 129 - 154[article]VGI3D: an interactive and low-cost solution for 3D building modelling from street-level VGI images / Chaoquan Zhang in Journal of Geovisualization and Spatial Analysis, vol 5 n° 2 (December 2021)
![]()
[article]
Titre : VGI3D: an interactive and low-cost solution for 3D building modelling from street-level VGI images Type de document : Article/Communication Auteurs : Chaoquan Zhang, Auteur ; Hongchao Fan, Auteur ; Gefei Kong, Auteur Année de publication : 2021 Article en page(s) : n° 18 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse de sensibilité
[Termes IGN] approche participative
[Termes IGN] base de données relationnelles
[Termes IGN] CityGML
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées des bénévoles
[Termes IGN] information sémantique
[Termes IGN] interactivité
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] reconstruction 3D du bâtiRésumé : (auteur) Applications in smart cities are inseparable from the usage of three-dimensional (3D) building models. However, the cost of generating and constructing 3D building models with semantic information is high both in time and in labour. To solve this problem, we developed a web-based interactive system, VGI3D, with the ambition of becoming a VGI platform to collect 3D building models with semantic information by using the power of crowdsourcing. VGI3D is a platform-independent software program that is composed of a spatially relational database (PostgreSQL/PostGIS) for the storage and management of spatially geometrical data and other software modules, allowing users to import, analyse, reconstruct, visualise, modify and export 3D building models according to the OBJ/CityGML standard. In this paper, we present the VGI3D in detail, focusing on relevant technical implementations, and report the results of limited usability testing aimed at optimising the system and user experience. After limited expert and non-expert participants’ testing, we proved the usefulness of VGI3D and its promising value for the 3D modelling community. Numéro de notice : A2021-884 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s41651-021-00086-7 Date de publication en ligne : 23/09/2021 En ligne : https://doi.org/10.1007/s41651-021-00086-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99205
in Journal of Geovisualization and Spatial Analysis > vol 5 n° 2 (December 2021) . - n° 18[article]Utilisation de l'apprentissage profond dans la modélisation 3D urbaine [Partie 1] / Hamza Ben Addou in Géomatique expert, n° 135 (septembre 2021)
PermalinkSemantic-aware label placement for augmented reality in street view / Jianqing Jia in The Visual Computer, vol 37 n° 7 (July 2021)
PermalinkSpatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation / Bing Liu in Cartography and Geographic Information Science, vol 48 n° 4 (July 2021)
PermalinkSemantic signatures for large-scale visual localization / Li Weng in Multimedia tools and applications, vol 80 n° 15 (June 2021)
PermalinkStop-and-move sequence expressions over semantic trajectories / Yenier Torres Izquierdo in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
PermalinkOntology-based semantic conceptualisation of historical built heritage to generate parametric structured models from point clouds / Elisabetta Colucci in Applied sciences, vol 11 n° 6 (March 2021)
PermalinkPermalinkPermalinkSemantic‐based urban growth prediction / Marvin Mc Cutchan in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkThe position of sound in audiovisual maps: an experimental study of performance in spatial memory / Nils Siepmann in Cartographica, vol 55 n° 2 (Summer 2020)
Permalink