Descripteur



Etendre la recherche sur niveau(x) vers le bas
Automated street tree inventory using mobile LiDAR point clouds based on Hough transform and active contours / Amir Hossein Safaie in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : Automated street tree inventory using mobile LiDAR point clouds based on Hough transform and active contours Type de document : Article/Communication Auteurs : Amir Hossein Safaie, Auteur ; Heidar Rastiveis, Auteur ; Alireza Shams, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 19 - 34 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] arbre remarquable
[Termes descripteurs IGN] détection d'arbres
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] inventaire
[Termes descripteurs IGN] sécurité routière
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] tessellation
[Termes descripteurs IGN] transformation de HoughRésumé : (auteur) Trees are important road-side objects, and their geometric information plays an essential role in road studies and safety analyses. This paper proposes an efficient method for the automated creation of a road-side tree inventory using Mobile Terrestrial Lidar System (MTLS) point clouds. In the proposed method ground points are filtered through preprocessing to reduce processing time. Next, tree trunks are detected by performing a Hough Transform (HT) algorithm on several generated raster images from the point clouds. By initiating an approximate area of a tree’s foliage through a Voronoi Tessellation (VT) algorithm, the accurate boundary of the foliage is identified by applying Active Contour (AC) models. By extracting the points within this foliage boundary the geometric characteristics of each tree are obtained. This method was evaluated with two sample point clouds from different MTLS systems, and the algorithm correctly extracted all of the trees from both datasets. Additionally, comparing the calculated parameters with manually observed measures, the accuracy of the obtained geometric parameters were promising. Numéro de notice : A2021-206 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.026 date de publication en ligne : 14/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.026 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97183
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 19 - 34[article]Application of various strategies and methodologies for landslide susceptibility maps on a basin scale: the case study of Val Tartano, Italy / Vasil Yordanov in Applied geomatics, vol 12 n° 4 (December 2020)
![]()
[article]
Titre : Application of various strategies and methodologies for landslide susceptibility maps on a basin scale: the case study of Val Tartano, Italy Type de document : Article/Communication Auteurs : Vasil Yordanov, Auteur ; Maria Antonia Brovelli, Auteur Année de publication : 2020 Article en page(s) : 23 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] cartographie géomorphologique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] figuré linéaire
[Termes descripteurs IGN] indice de risque
[Termes descripteurs IGN] inventaire
[Termes descripteurs IGN] Lombardie
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] modèle statistique
[Termes descripteurs IGN] régression logistiqueRésumé : (auteur) Landslide susceptibility mapping is a crucial initial step in risk mitigation strategies. Landslide hazards are widely spread all over the world and, as such, mapping the relevant susceptibility levels is in constant research and development. As a result, numerous modelling techniques and approaches have been adopted by scholars, implementing these models at different scales and with different terrains, in search of the best-performing strategy. Nevertheless, a direct comparison is not possible unless the strategies are implemented under the same environmental conditions and scenarios. The aim of this work is to implement three statistical-based models (Statistical Index, Logistic Regression, and Random Forest) at the basin scale, using various scenarios for the input datasets (terrain variables), training samples and ratios, and validation metrics. A reassessment of the original input data was carried out to improve the model performance. In total, 79 maps were obtained using different combinations with some highly satisfactory outcomes and others that are barely acceptable. Random Forest achieved the highest scores in most of the cases, proving to be a reliable modelling approach. While Statistical Index passes the evaluation tests, most of the resulting maps were considered unreliable. This research highlighted the importance of a complete and up-to-date landslide inventory, the knowledge of local conditions, as well as the pre- and post-analysis evaluation of the input and output combinations. Numéro de notice : A2020-695 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1007/s12518-020-00344-1 date de publication en ligne : 09/11/2020 En ligne : https://doi.org/10.1007/s12518-020-00344-1 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96244
in Applied geomatics > vol 12 n° 4 (December 2020) . - 23 p.[article]Topographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México / Nelly L. Ramirez Serrato in Geocarto international, vol 35 n° 15 ([01/11/2020])
![]()
[article]
Titre : Topographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México Type de document : Article/Communication Auteurs : Nelly L. Ramirez Serrato, Auteur ; Fabiola D. Yepez-Rincon, Auteur ; Adrian L. Ferrino Fierro, Auteur Année de publication : 2020 Article en page(s) : pp 1706 - 1721 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] inventaire
[Termes descripteurs IGN] Mexique
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] visualisation 3DRésumé : (auteur) By nature, slopes are conformed by forces that are in constant balance. Altering this natural balance causes the sliding of soil towards lower zones. Landslides are a constant danger that compromises the general welfare of society. Landslides mapping is especially important for urban areas or development plans. The innovative aspect of this study is the creation of the Topographic Connection Method (TPCM) to automatically map landslides using two types of landslides 1) falls and 2) flows. TPCM cartography results were compared to a previously proven method (Contour Connection Method), as well as to the manual inventory method. Each method was run four times to locate changes through time by using satellite imagery, digital elevations models and 3D relief visualizations with data covering a period from 2012 to 2017. Results showed both falls and flows with all three methods and demonstrated that TPCM can improve mapping accuracy by up to 14%. Numéro de notice : A2020-659 Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581269 date de publication en ligne : 01/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96132
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1706 - 1721[article]Detecting abandoned farmland using harmonic analysis and machine learning / Heeyeun Yoon in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Detecting abandoned farmland using harmonic analysis and machine learning Type de document : Article/Communication Auteurs : Heeyeun Yoon, Auteur ; Soyoun Kim, Auteur Année de publication : 2020 Article en page(s) : pp 201 - 212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse harmonique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] gestion des ressources
[Termes descripteurs IGN] inventaire
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Normalized Difference Water Index
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] production agricole
[Termes descripteurs IGN] Soil Adjusted Vegetation Index
[Termes descripteurs IGN] surface cultivéeRésumé : (auteur) It is critical to inventory abandoned farmland soon after it is generated, to better manage agricultural resources and to prevent negative consequences that would otherwise follow. This study aims to distinguish abandoned farmlands from active croplands—rice paddy and agricultural fields—by discerning the phenological trajectories over a short-term period of three years (Jan. 2016 to Dec. 2018) in Gwanyang City in South Korea. For Support Vector Machine (SVM) classification, we fully utilized parameters derived from harmonic analyses of the three vegetation indices (VIs: NDVI, NDWI, and SAVI) extracted from Sentinel-2A imagery. The harmonic analyses proved that higher-order sinusoid components produced better fitting to explain the trajectory of the VIs—the maximum adjusted was 95.23%—and the multiple VIs diversified the attributes for the classifications. Consequently, the higher-order harmonic components and the additional VIs increased the accuracy when used in SVM classification. The best performing classification was achieved with a composite of harmonic terms derived from the three VIs, yielding overall accuracy of 90.72%, Kappa index of 0.858, and user’s accuracy for abandoned farmland of 93.40%. The proposed method here would greatly improve the process of detecting abandoned farmland, despite a relatively short observation period, and enable a rapid response to the occurrence of abandonment. Numéro de notice : A2020-356 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.021 date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95243
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 201 - 212[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Geocoding of trees from street addresses and street-level images / Daniel Laumer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
![]()
[article]
Titre : Geocoding of trees from street addresses and street-level images Type de document : Article/Communication Auteurs : Daniel Laumer, Auteur ; Nico Lang, Auteur ; Natalie Van Doorn, Auteur Année de publication : 2020 Article en page(s) : pp 125 - 136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse des correspondances
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre urbain
[Termes descripteurs IGN] Californie (Etats-Unis)
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection d'arbres
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] géocodage par adresse postale
[Termes descripteurs IGN] image panoramique
[Termes descripteurs IGN] image Streetview
[Termes descripteurs IGN] inventaire
[Termes descripteurs IGN] service écosystémique
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) We introduce an approach for updating older tree inventories with geographic coordinates using street-level panorama images and a global optimization framework for tree instance matching. Geolocations of trees in inventories until the early 2000s where recorded using street addresses whereas newer inventories use GPS. Our method retrofits older inventories with geographic coordinates to allow connecting them with newer inventories to facilitate long-term studies on tree mortality etc. What makes this problem challenging is the different number of trees per street address, the heterogeneous appearance of different tree instances in the images, ambiguous tree positions if viewed from multiple images and occlusions. To solve this assignment problem, we (i) detect trees in Google street-view panoramas using deep learning, (ii) combine multi-view detections per tree into a single representation, (iii) and match detected trees with given trees per street address with a global optimization approach. Experiments for trees in 5 cities in California, USA, show that we are able to assign geographic coordinates to 38% of the street trees, which is a good starting point for long-term studies on the ecosystem services value of street trees at large scale. Numéro de notice : A2020-124 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.001 date de publication en ligne : 21/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94749
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 125 - 136[article]Restitution 4D du Château du Kagenfels par combinaison de l’existant et d’hypothèses archéologiques pour une visite virtuelle du site. / Théo Benazzi (2018)
PermalinkComparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence and evidential belief function models / Kai Cui in Geocarto international, vol 32 n° 9 (September 2017)
PermalinkDeux systèmes d’évaluation du statut de conservation des espèces en France : complémentarité ou redondance ? Cas de la liste rouge et du rapport sur l’état de conservation pour la directive habitats-faune-flore / Renaud Puissauve in Revue d'écologie, vol 71 n° 4 (octobre - décembre 2016)
PermalinkPredicting palustrine wetland probability using random forest machine learning and digital elevation data-derived terrain variables / Aaron E. Maxwell in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 6 (June 2016)
PermalinkSpatial analysis of coastal chalk cliff falls in upper Normandy (France). From Veules-les-Roses to Le Treport (2002-2009) / Pauline Letortu in Revue internationale de géomatique, vol 24 n° 3 (septembre - novembre 2014)
PermalinkPermalinkActive learning in the spatial domain for remote sensing image classification / André Stumpf in IEEE Transactions on geoscience and remote sensing, vol 52 n° 5 tome 1 (May 2014)
PermalinkThe online TÉKA database, an integrated approach to landmark inventorization / László Kollányi in Geocarto international, vol 28 n° 1-2 (February - May 2013)
PermalinkApports des données ALOS PALSAR polarimétriques à la détection des zones humides littorales (Sassandra, Côte d'Ivoire) / Kouakou Hervé Kouassi in Photo interpretation, European journal of applied remote sensing, vol 48 n° 4 (décembre 2012)
PermalinkPermalink