Descripteur
Termes IGN > informatique > traitement automatique de données > fusion de données > algorithme de fusion > algorithme ICP
algorithme ICP |
Documents disponibles dans cette catégorie (36)



Etendre la recherche sur niveau(x) vers le bas
A hierarchical multiview registration framework of TLS point clouds based on loop constraint / Hao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
![]()
[article]
Titre : A hierarchical multiview registration framework of TLS point clouds based on loop constraint Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Li Yan, Auteur ; Hong Xie, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 65 - 76 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] appariement de points
[Termes IGN] approche hiérarchique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] superposition de données
[Termes IGN] traitement de semis de pointsRésumé : (auteur) Automatic registration of multiple point clouds is a significant preprocessing step for 3D computer vision tasks including semantic segmentation, 3D modelling, change detection, etc. Many methods were proposed to deal with this problem and yet most of them are not fully utilizing the redundant information offered by multiple common overlaps among point clouds. The existing methods are also inefficient when dealing with large-scale point clouds. In this paper, a novel automatic registration framework is presented to align point clouds efficiently and robustly. First, the overall number of scans is grouped into several scan-blocks by a proposed blocking strategy, and we build the pairwise relationship among scans through a fully connected graph in each scan-block. Second, perform loop-based coarse registration in each scan-block using a proposed false matches removal strategy. The proposed strategy can effectively identify grossly wrong scan-to-scan matches. Third, the minimum spanning tree is extracted from the graph, and ICP is applied along its edges. Moreover, the Lu–Milios algorithm is used to further optimize all poses at once by utilizing all redundant information in each scan-block. Finally, global block-to-block registration aligns all scan-blocks into a uniform coordinate reference. We test our framework on challenging WHU-TLS datasets, ETH datasets, and Robotic 3D Scan datasets to evaluate the efficiency, accuracy, as well as robustness. The experiment results show that our method achieves the state-of-the-art accuracy, while the time performance is improved by more than 30% compared with the state-of-the-art algorithms. Our source code is made available at https://github.com/WuHao-WHU/HL-MRF for benchmarking purposes. Numéro de notice : A2023-008 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.11.004 Date de publication en ligne : 19/11/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.11.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102112
in ISPRS Journal of photogrammetry and remote sensing > vol 195 (January 2023) . - pp 65 - 76[article]Automatic registration method of multi-source point clouds based on building facades matching in urban scenes / Yumin Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)
![]()
[article]
Titre : Automatic registration method of multi-source point clouds based on building facades matching in urban scenes Type de document : Article/Communication Auteurs : Yumin Tan, Auteur ; Yanzhe Shi, Auteur ; Yunxin Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 767 - 782 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] appariement de formes
[Termes IGN] appariement de points
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] façade
[Termes IGN] fusion de données multisource
[Termes IGN] modélisation 3D
[Termes IGN] photogrammétrie aérienne
[Termes IGN] points registration
[Termes IGN] Ransac (algorithme)
[Termes IGN] recalage de données localisées
[Termes IGN] scène urbaine
[Termes IGN] superposition de donnéesRésumé : (auteur) Both UAV photogrammetry and lidar have become common in deriv- ing three-dimensional models of urban scenes, and each has its own advantages and disadvantages. However, the fusion of these multisource data is still challenging, in which registration is one of the most important stages. In this paper, we propose a method of coarse point cloud registration which consists of two steps. The first step is to extract urban building facades in both an oblique photogrammetric point cloud and a lidar point cloud. The second step is to align the two point clouds using the extracted building facades. Object Vicinity Distribution Feature (Dijkman and Van Den Heuvel 2002) is introduced to describe the distribution of building facades and register the two heterologous point clouds. This method provides a good initial state for later refined registration process and is translation, rotation, and scale invariant. Experiment results show that the accuracy of this proposed automatic registration method is equiva- lent to the accuracy of manual registration with control points. Numéro de notice : A2022-882 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00069R3 Date de publication en ligne : 01/12/2022 En ligne : https://doi.org/10.14358/PERS.22-00069R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102206
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 12 (December 2022) . - pp 767 - 782[article]Summarizing large scale 3D mesh for urban navigation / Imeen Ben Salah in Robotics and autonomous systems, vol 152 (June 2022)
![]()
[article]
Titre : Summarizing large scale 3D mesh for urban navigation Type de document : Article/Communication Auteurs : Imeen Ben Salah, Auteur ; Sébastien Kramm, Auteur ; Cédric Demonceaux, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104037 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme ICP
[Termes IGN] carte en 3D
[Termes IGN] données lidar
[Termes IGN] entropie
[Termes IGN] image hémisphérique
[Termes IGN] image RVB
[Termes IGN] information sémantique
[Termes IGN] localisation basée vision
[Termes IGN] maillage
[Termes IGN] navigation autonome
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] précision radiométrique
[Termes IGN] profondeur
[Termes IGN] Rouen
[Termes IGN] saillance
[Termes IGN] zone urbaineRésumé : (auteur) Cameras have become increasingly common in vehicles, smartphones, and advanced driver assistance systems. The areas of application of these cameras in the world of intelligent transportation systems are becoming more and more varied: pedestrian detection, line crossing detection, navigation, …A major area of research currently focuses on mapping that is essential for localization and navigation. However, this step generates an important problem of memory management. Indeed, the memory space required to accommodate the map of a small city is measured in tens gigabytes. In addition, several providers today are competing to produce High-Definition (HD) maps. These maps offer a rich and detailed representation of the environment for highly accurate localization. However, they require a large storage capacity and high transmission and update costs. To overcome these problems, we propose a solution to summarize this type of map by reducing the size while maintaining the relevance of the data for navigation based on vision only. The summary consists in a set of spherical images augmented by depth and semantic information and allowing to keep the same level of visibility in every directions. These spheres are used as landmarks to offer guidance information to a distant agent. They then have to guarantee, at a lower cost, a good level of precision and speed during navigation. Some experiments on real data demonstrate the feasibility for obtaining a summarized map while maintaining a localization with interesting performances. Numéro de notice : A2022-290 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.robot.2022.104037 Date de publication en ligne : 03/02/2022 En ligne : https://doi.org/10.1016/j.robot.2022.104037 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100335
in Robotics and autonomous systems > vol 152 (June 2022) . - n° 104037[article]Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features / Bai Zhu in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
![]()
[article]
Titre : Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features Type de document : Article/Communication Auteurs : Bai Zhu, Auteur ; Yuanxin Ye, Auteur ; Liang Zhou, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 129 - 147 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] correction géométrique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] élément d'orientation externe
[Termes IGN] enregistrement de données
[Termes IGN] filtre de Gabor
[Termes IGN] image aérienne
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) Co-registration of aerial imagery and Light Detection and Ranging (LiDAR) data is quite challenging because the different imaging mechanisms produce significant geometric and radiometric distortions between the two multimodal data sources. To address this problem, we propose a robust and effective coarse-to-fine registration method that is conducted in two stages utilizing spatial constraints and Gabor structural features. In the first stage, the LiDAR point cloud data is transformed into an intensity map that is used as the reference image. Then, coarse registration is completed by designing a partition-based Features from Accelerated Segment Test (FAST) operator to extract the uniformly distributed interest points in the aerial images and thereafter performing a local geometric correction based on the collinearity equations using the exterior orientation parameters (EoPs). The coarse registration aims to provide a reliable spatial geometry relationship for the subsequent fine registration and is designed to eliminate rotation and scale changes, as well as making only a few translation differences exist between the images. In the second stage, a novel feature descriptor called multi-Scale and multi-Directional Features of odd Gabor (SDFG) is first built to capture the multi-scale and multi-directional structural properties of the images. Then, the three-dimensional (3D) phase correlation (PC) of the SDFG descriptor is established to detect the control points (CPs) between the aerial and LiDAR intensity image in the frequency domain, where the image matching is accelerated by the 3D Fast Fourier Transform (FFT) technique. Finally, the obtained CPs not only are employed to refine the EoPs, but also are used to achieve the fine registration of the aerial images and LiDAR data. We conduct experiments to verify the robustness of the proposed registration method using three sets of aerial images and LiDAR data with different scene coverage. Experimental results show that the proposed method is robust to geometric distortions and radiometric changes. Moreover, it achieves the registration accuracy of less than 2 pixels for all cases, which outperforms the current four state-of-the-art methods, demonstrating its superior registration performance. Numéro de notice : A2021-773 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.09.010 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.09.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98830
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 129 - 147[article]Integration of laser scanner and photogrammetry for heritage BIM enhancement / Yahya Alshawabkeh in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)
![]()
[article]
Titre : Integration of laser scanner and photogrammetry for heritage BIM enhancement Type de document : Article/Communication Auteurs : Yahya Alshawabkeh, Auteur ; Ahmad Baik, Auteur ; Yehia Miky, Auteur Année de publication : 2021 Article en page(s) : n° 316 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme ICP
[Termes IGN] Djeddah
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données TLS (télémétrie)
[Termes IGN] image captée par drone
[Termes IGN] lasergrammétrie
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] monument historique
[Termes IGN] ombre
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de pointsRésumé : (auteur) Digital 3D capture and reliable reproduction of architectural features is the first and most difficult step towards defining a heritage BIM. Three-dimensional digital survey technologies, such as TLS and photogrammetry, enable experts to scan buildings with a new level of detail. Challenges in the tracing of parametric objects in a TLS point cloud include the reconstruction of occluded parts, measurement of uncertainties relevant to surface reflectivity, and edge detection and location. In addition to image-based techniques being considered cost effective, highly flexible, and efficient in producing a high-quality 3D textured model, they also provide a better interpretation of surface linear characteristics. This article addresses an architecture survey workflow using photogrammetry and TLS to optimize a point cloud that is sufficient for a reliable HBIM. Fusion-based workflows were proposed during the recording of two heritage sites—the Matbouli House Museum in Historic Jeddah, a UNESCO World Heritage Site; and Asfan Castle. In the Matbouli House Museum building, which is rich with complex architectural features, multi-sensor recording was implemented at different resolutions and levels of detail. The TLS data were used to reconstruct the basic shape of the main structural elements, while the imagery’s superior radiometric data and accessibility were effectively used to enhance the TLS point clouds for improving the geometry, data interpretation, and parametric tracing of irregular objects in the facade. Furthermore, in the workflow that is considered to be the ragged terrain of the Castle of Asfan, here, the TLS point cloud was supplemented with UAV data in the upper building zones where the shadow data originated. Both datasets were registered using an ICP algorithm to scale the photogrammetric data and define their actual position in the construction system. The hybrid scans were imported and processed in the BIM environment. The building components were segmented and classified into regular and irregular surfaces, in order to perform detailed building information modeling of the architectural elements. The proposed workflows demonstrated an appropriate performance in terms of reliable and complete BIM mapping in the complex structures. Numéro de notice : A2021-511 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10050316 Date de publication en ligne : 08/05/2021 En ligne : https://doi.org/10.3390/ijgi10050316 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97678
in ISPRS International journal of geo-information > vol 10 n° 5 (May 2021) . - n° 316[article]Automated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)
PermalinkImproving trajectory estimation using 3D city models and kinematic point clouds / Lucas Lucks in Transactions in GIS, Vol 25 n° 1 (February 2021)
PermalinkCartographie dense et compacte par vision RGB-D pour la navigation d’un robot mobile / Bruce Canovas (2021)
PermalinkDelineating minor landslide displacements using GPS and terrestrial laser scanning-derived terrain surfaces and trees: a case study of the Slumgullion landslide, Lake City, Colorado / Jin Wang in Survey review, vol 52 n° 372 (May 2020)
PermalinkAutomated fusion of forest airborne and terrestrial point clouds through canopy density analysis / Wenxia Dai in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
PermalinkReview of mobile laser scanning target‐free registration methods for urban areas using improved error metrics / Hoang Long Nguyen in Photogrammetric record, vol 34 n° 167 (September 2019)
PermalinkFusion de sets de photos provenant de capteurs différents dans le domaine de l’archéologie / Hugo De Paulis (2019)
PermalinkPermalinkRecalage conjoint de données de cartographie mobile et de modèles 3D de bâtiments / Miloud Mezian (2019)
PermalinkVision-based localization with discriminative features from heterogeneous visual data / Nathan Piasco (2019)
Permalink