Descripteur



Etendre la recherche sur niveau(x) vers le bas
An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds Type de document : Article/Communication Auteurs : Fei Su, Auteur ; Haihong Zhu, Auteur ; Taoyi Chen, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] adjacence
[Termes descripteurs IGN] appariement de graphes
[Termes descripteurs IGN] balayage laser
[Termes descripteurs IGN] bloc d'ancrage
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] objet 3D
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Most of the existing 3D indoor object classification methods have shown impressive achievements on the assumption that all objects are oriented in the upward direction with respect to the ground. To release this assumption, great effort has been made to handle arbitrarily oriented objects in terrestrial laser scanning (TLS) point clouds. As one of the most promising solutions, anchor-based graphs can be used to classify freely oriented objects. However, this approach suffers from missing anchor detection since valid detection relies heavily on the completeness of an anchor’s point clouds and is sensitive to missing data. This paper presents an anchor-based graph method to detect and classify arbitrarily oriented indoor objects. The anchors of each object are extracted by the structurally adjacent relationship among parts instead of the parts’ geometric metrics. In the case of adjacency, an anchor can be correctly extracted even with missing parts since the adjacency between an anchor and other parts is retained irrespective of the area extent of the considered parts. The best graph matching is achieved by finding the optimal corresponding node-pairs in a super-graph with fully connecting nodes based on maximum likelihood. The performances of the proposed method are evaluated with three indicators (object precision, object recall and object F1-score) in seven datasets. The experimental tests demonstrate the effectiveness of dealing with TLS point clouds, RGBD point clouds and Panorama RGBD point clouds, resulting in performance scores of approximately 0.8 for object precision and recall and over 0.9 for chair precision and table recall. Numéro de notice : A2021-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.007 date de publication en ligne : 29/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96852
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 114 - 131[article]Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (December 2020)
![]()
[article]
Titre : Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Cuizhen Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 329 - 342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] contour
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] Kiangsi (Chine)
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] taille du jeu de donnéesRésumé : (auteur) Land cover data is an inventory of objects on the Earth’s surface, which is often derived from remotely sensed imagery. Deep Convolutional Neural Network (DCNN) is a competitive method in image semantic segmentation. Some scholars argue that the inadequacy of training set is an obstacle when applying DCNNs in remote sensing image segmentation. While existing land cover data can be converted to large training sets, the size of training data set needs to be carefully considered. In this paper, we used different portions of a high-resolution land cover map to produce different sizes of training sets to train DCNNs (SegNet and U-Net) and then quantitatively evaluated the impact of training set size on the performance of the trained DCNN. We also introduced a new metric, Edge-ratio, to assess the performance of DCNN in maintaining the boundary of land cover objects. Based on the experiments, we document the relationship between the segmentation accuracy and the size of the training set, as well as the nonstationary accuracies among different land cover types. The findings of this paper can be used to effectively tailor the existing land cover data to training sets, and thus accelerate the assessment and employment of deep learning techniques for high-resolution land cover map extraction. Numéro de notice : A2020-800 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1803402 date de publication en ligne : 10/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1803402 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96723
in Annals of GIS > vol 26 n° 4 (December 2020) . - pp 329 - 342[article]High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network / Fengpeng Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
![]()
[article]
Titre : High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network Type de document : Article/Communication Auteurs : Fengpeng Li, Auteur ; Ruyi Feng, Auteur ; Wei Han, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8077 - 8092 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] filtrage numérique d'image
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] test statistiqueRésumé : (auteur) High-resolution remote sensing (HRRS) image scene classification has attracted an enormous amount of attention due to its wide application in a range of tasks. Due to the rapid development of deep learning (DL), models based on convolutional neural network (CNN) have made competitive achievements on HRRS image scene classification because of the excellent representation capacity of DL. The scene labels of HRRS images extremely depend on the combination of global information and information from key regions or locations. However, most existing models based on CNN tend only to represent the global features of images or overstate local information capturing from key regions or locations, which may confuse different categories. To address this issue, a key region or location capturing method called key filter bank (KFB) is proposed in this article, and KFB can retain global information at the same time. This method can combine with different CNN models to improve the performance of HRRS imagery scene classification. Moreover, for the convenience of practical tasks, an end-to-end model called KFBNet where KFB combined with DenseNet-121 is proposed to compare the performance with existing models. This model is evaluated on public benchmark data sets, and the proposed model makes better performance on benchmarks than the state-of-the-art methods. Numéro de notice : A2020-683 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2987060 date de publication en ligne : 23/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2987060 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96208
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8077 - 8092[article]Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets / Lamin R. Mansaray in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Jingfeng Huang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1088 - 1108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] rizière
[Termes descripteurs IGN] surface cultivéeRésumé : (auteur) SVM and RF are widely used in rice mapping. However, their performance with single and different combinations of satellite datasets is rarely reported. Hence we report their rice mapping accuracies for two seasons using Sentinel-1A, Landsat-8 and Sentinel-2A images. The VH and VV polarizations of Sentinel-1A, and two spectral indices (SIs) of Landsat-8 and Sentine1-2A were used to obtain seven datasets (VH, VV, SI, VHVV, VHSI, VVSI and VHVVSI), and on which SVM and RF were applied and accuracies were assessed. VHSI showed the highest overall accuracy for both algorithms in both years. SVM with VHSI had a slightly higher accuracy (90.8%) than RF with VHSI (89.2%) in 2015 while in 2016 RF with VHSI showed a slightly higher accuracy (95.2%) than SVM with VHSI (93.4%). Although they produced equivalent accuracies within years, RF is more sensitive to additional data, given a 6.0% increase from 2015 to 2016 with VHSI. Numéro de notice : A2020-443 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1568586 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1568586 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95501
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1088 - 1108[article]Structure from motion for complex image sets / Mario Michelini in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Structure from motion for complex image sets Type de document : Article/Communication Auteurs : Mario Michelini, Auteur ; Helmut Mayer, Auteur Année de publication : 2020 Article en page(s) : pp 140 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] arbre aléatoire minimum
[Termes descripteurs IGN] chambre de prise de vue numérique
[Termes descripteurs IGN] distorsion d'image
[Termes descripteurs IGN] étalonnage d'instrument
[Termes descripteurs IGN] fusion de données multisource
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] reconstruction 3D
[Termes descripteurs IGN] SIFT (algorithme)
[Termes descripteurs IGN] structure-from-motionRésumé : (auteur) This paper presents an approach for Structure from Motion (SfM) for unorganized complex image sets. To achieve high accuracy and robustness, image triplets are employed and an (approximate) internal camera calibration is assumed to be known. The complexity of an image set is determined by the camera configurations which may include wide as well as weak baselines. Wide baselines occur for instance when terrestrial images and images from small Unmanned Aerial Systems (UAS) are combined. The resulting large (geometric/radiometric) distortions between images make image matching difficult possibly leading to an incomplete result. Weak baselines mean an insufficient distance between cameras compared to the distance of the observed scene and give rise to critical camera configurations. Inappropriate handling of such configurations may lead to various problems in triangulation-based SfM up to total failure. The focus of our approach lies on a complete linking of images even in case of wide or weak baselines. We do not rely on any additional information such as camera configurations, Global Positioning System (GPS) or an Inertial Navigation System (INS). As basis for generating suitable triplets to link the images, an iterative graph-based method is employed formulating image linking as the search for a terminal Steiner minimum tree in the line graph. SIFT (Lowe, 2004) descriptors are embedded into Hamming space for fast image similarity ranking. This is employed to limit the number of pairs to be geometrically verified by a computationally and more complex wide baseline matching method (Mayer et al., 2012). Critical camera configurations which are not suitable for geometric verification are detected by means of classification (Michelini and Mayer, 2019). Additionally, we propose a graph-based approach for the optimization of the hierarchical merging of triplets to efficiently generate larger image subsets. By this means, a complete, 3D reconstruction of the scene is obtained. Experiments demonstrate that the approach is able to produce reliable orientation for large image sets comprising wide as well as weak baseline configurations. Numéro de notice : A2020-355 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.020 date de publication en ligne : 12/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.020 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95242
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 140 - 152[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Transferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkA restrictive polymorphic ant colony algorithm for the optimal band selection of hyperspectral remote sensing images / Xiaohui Ding in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
PermalinkClassification of poplar trees with object-based ensemble learning algorithms using Sentinel-2A imagery / H. Tombul in Journal of geodetic science, vol 10 n° 1 (janvier 2020)
PermalinkPermalinkInterpreting effects of multiple, large-scale disturbances using national forest inventory data: A case study of standing dead trees in east Texas, USA / Christopher B. Edgar in Forest ecology and management, vol 437 (1 April 2019)
PermalinkUn bilan des modalités d’évaluation de l’état de conservation des habitats forestiers dans 399 sites Natura 2000 / Damien Marage in Revue forestière française [en ligne], Vol 71 n° 2 (2019)
PermalinkChallenging deep image descriptors for retrieval in heterogeneous iconographic collections / Dimitri Gominski (2019)
PermalinkPermalinkPermalinkZoome encore un peu … Une interface de saisie de données géographiques qui permet d’être au bon niveau de détail / Guillaume Touya (2019)
Permalink