Descripteur



Etendre la recherche sur niveau(x) vers le bas
Semi-supervised joint learning for hand gesture recognition from a single color image / Chi Xu in Sensors, vol 21 n° 3 (February 2021)
![]()
[article]
Titre : Semi-supervised joint learning for hand gesture recognition from a single color image Type de document : Article/Communication Auteurs : Chi Xu, Auteur ; Yunkai Jiang, Auteur ; Jun Zhou, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1007 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] apprentissage semi-dirigé
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] estimation de pose
[Termes descripteurs IGN] image en couleur
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] reconnaissance de gestesRésumé : (auteur) Hand gesture recognition and hand pose estimation are two closely correlated tasks. In this paper, we propose a deep-learning based approach which jointly learns an intermediate level shared feature for these two tasks, so that the hand gesture recognition task can be benefited from the hand pose estimation task. In the training process, a semi-supervised training scheme is designed to solve the problem of lacking proper annotation. Our approach detects the foreground hand, recognizes the hand gesture, and estimates the corresponding 3D hand pose simultaneously. To evaluate the hand gesture recognition performance of the state-of-the-arts, we propose a challenging hand gesture recognition dataset collected in unconstrained environments. Experimental results show that, the gesture recognition accuracy of ours is significantly boosted by leveraging the knowledge learned from the hand pose estimation task. Numéro de notice : A2021-160 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21031007 date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.3390/s21031007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97076
in Sensors > vol 21 n° 3 (February 2021) . - n° 1007[article]Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (December 2020)
![]()
[article]
Titre : Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Cuizhen Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 329 - 342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] contour
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] Kiangsi (Chine)
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] taille du jeu de donnéesRésumé : (auteur) Land cover data is an inventory of objects on the Earth’s surface, which is often derived from remotely sensed imagery. Deep Convolutional Neural Network (DCNN) is a competitive method in image semantic segmentation. Some scholars argue that the inadequacy of training set is an obstacle when applying DCNNs in remote sensing image segmentation. While existing land cover data can be converted to large training sets, the size of training data set needs to be carefully considered. In this paper, we used different portions of a high-resolution land cover map to produce different sizes of training sets to train DCNNs (SegNet and U-Net) and then quantitatively evaluated the impact of training set size on the performance of the trained DCNN. We also introduced a new metric, Edge-ratio, to assess the performance of DCNN in maintaining the boundary of land cover objects. Based on the experiments, we document the relationship between the segmentation accuracy and the size of the training set, as well as the nonstationary accuracies among different land cover types. The findings of this paper can be used to effectively tailor the existing land cover data to training sets, and thus accelerate the assessment and employment of deep learning techniques for high-resolution land cover map extraction. Numéro de notice : A2020-800 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1803402 date de publication en ligne : 10/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1803402 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96723
in Annals of GIS > vol 26 n° 4 (December 2020) . - pp 329 - 342[article]High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network / Fengpeng Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
![]()
[article]
Titre : High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network Type de document : Article/Communication Auteurs : Fengpeng Li, Auteur ; Ruyi Feng, Auteur ; Wei Han, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8077 - 8092 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] filtrage numérique d'image
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] test statistiqueRésumé : (auteur) High-resolution remote sensing (HRRS) image scene classification has attracted an enormous amount of attention due to its wide application in a range of tasks. Due to the rapid development of deep learning (DL), models based on convolutional neural network (CNN) have made competitive achievements on HRRS image scene classification because of the excellent representation capacity of DL. The scene labels of HRRS images extremely depend on the combination of global information and information from key regions or locations. However, most existing models based on CNN tend only to represent the global features of images or overstate local information capturing from key regions or locations, which may confuse different categories. To address this issue, a key region or location capturing method called key filter bank (KFB) is proposed in this article, and KFB can retain global information at the same time. This method can combine with different CNN models to improve the performance of HRRS imagery scene classification. Moreover, for the convenience of practical tasks, an end-to-end model called KFBNet where KFB combined with DenseNet-121 is proposed to compare the performance with existing models. This model is evaluated on public benchmark data sets, and the proposed model makes better performance on benchmarks than the state-of-the-art methods. Numéro de notice : A2020-683 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2987060 date de publication en ligne : 23/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2987060 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96208
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8077 - 8092[article]Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets / Lamin R. Mansaray in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Jingfeng Huang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1088 - 1108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] rizière
[Termes descripteurs IGN] surface cultivéeRésumé : (auteur) SVM and RF are widely used in rice mapping. However, their performance with single and different combinations of satellite datasets is rarely reported. Hence we report their rice mapping accuracies for two seasons using Sentinel-1A, Landsat-8 and Sentinel-2A images. The VH and VV polarizations of Sentinel-1A, and two spectral indices (SIs) of Landsat-8 and Sentine1-2A were used to obtain seven datasets (VH, VV, SI, VHVV, VHSI, VVSI and VHVVSI), and on which SVM and RF were applied and accuracies were assessed. VHSI showed the highest overall accuracy for both algorithms in both years. SVM with VHSI had a slightly higher accuracy (90.8%) than RF with VHSI (89.2%) in 2015 while in 2016 RF with VHSI showed a slightly higher accuracy (95.2%) than SVM with VHSI (93.4%). Although they produced equivalent accuracies within years, RF is more sensitive to additional data, given a 6.0% increase from 2015 to 2016 with VHSI. Numéro de notice : A2020-443 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1568586 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1568586 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95501
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1088 - 1108[article]Structure from motion for complex image sets / Mario Michelini in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Structure from motion for complex image sets Type de document : Article/Communication Auteurs : Mario Michelini, Auteur ; Helmut Mayer, Auteur Année de publication : 2020 Article en page(s) : pp 140 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] arbre aléatoire minimum
[Termes descripteurs IGN] chambre de prise de vue numérique
[Termes descripteurs IGN] distorsion d'image
[Termes descripteurs IGN] étalonnage d'instrument
[Termes descripteurs IGN] fusion de données multisource
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] reconstruction 3D
[Termes descripteurs IGN] SIFT (algorithme)
[Termes descripteurs IGN] structure-from-motionRésumé : (auteur) This paper presents an approach for Structure from Motion (SfM) for unorganized complex image sets. To achieve high accuracy and robustness, image triplets are employed and an (approximate) internal camera calibration is assumed to be known. The complexity of an image set is determined by the camera configurations which may include wide as well as weak baselines. Wide baselines occur for instance when terrestrial images and images from small Unmanned Aerial Systems (UAS) are combined. The resulting large (geometric/radiometric) distortions between images make image matching difficult possibly leading to an incomplete result. Weak baselines mean an insufficient distance between cameras compared to the distance of the observed scene and give rise to critical camera configurations. Inappropriate handling of such configurations may lead to various problems in triangulation-based SfM up to total failure. The focus of our approach lies on a complete linking of images even in case of wide or weak baselines. We do not rely on any additional information such as camera configurations, Global Positioning System (GPS) or an Inertial Navigation System (INS). As basis for generating suitable triplets to link the images, an iterative graph-based method is employed formulating image linking as the search for a terminal Steiner minimum tree in the line graph. SIFT (Lowe, 2004) descriptors are embedded into Hamming space for fast image similarity ranking. This is employed to limit the number of pairs to be geometrically verified by a computationally and more complex wide baseline matching method (Mayer et al., 2012). Critical camera configurations which are not suitable for geometric verification are detected by means of classification (Michelini and Mayer, 2019). Additionally, we propose a graph-based approach for the optimization of the hierarchical merging of triplets to efficiently generate larger image subsets. By this means, a complete, 3D reconstruction of the scene is obtained. Experiments demonstrate that the approach is able to produce reliable orientation for large image sets comprising wide as well as weak baseline configurations. Numéro de notice : A2020-355 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.020 date de publication en ligne : 12/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.020 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95242
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 140 - 152[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Homogenizing GPS integrated water vapor time series: Benchmarking break detection methods on synthetic data sets / Roeland Van Malderen in Earth and space science, vol 7 n° 5 (May 2020)
PermalinkTransferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkA restrictive polymorphic ant colony algorithm for the optimal band selection of hyperspectral remote sensing images / Xiaohui Ding in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
PermalinkClassification of poplar trees with object-based ensemble learning algorithms using Sentinel-2A imagery / H. Tombul in Journal of geodetic science, vol 10 n° 1 (janvier 2020)
PermalinkLearning and geometric approaches for automatic extraction of objects from remote sensing images / Nicolas Girard (2020)
PermalinkPermalinkInterpreting effects of multiple, large-scale disturbances using national forest inventory data: A case study of standing dead trees in east Texas, USA / Christopher B. Edgar in Forest ecology and management, vol 437 (1 April 2019)
PermalinkUn bilan des modalités d’évaluation de l’état de conservation des habitats forestiers dans 399 sites Natura 2000 / Damien Marage in Revue forestière française [en ligne], Vol 71 n° 2 (2019)
PermalinkChallenging deep image descriptors for retrieval in heterogeneous iconographic collections / Dimitri Gominski (2019)
PermalinkPermalinkPermalinkZoome encore un peu … Une interface de saisie de données géographiques qui permet d’être au bon niveau de détail / Guillaume Touya (2019)
PermalinkHistorical collaborative geocoding / Rémi Cura in ISPRS International journal of geo-information, vol 7 n° 7 (July 2018)
![]()
PermalinkBand subset selection for anomaly detection in hyperspectral imagery / Lin Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 9 (September 2017)
PermalinkEnseignements du test utilisateur d'une géovisualisation dynamique : des améliorations possibles pour les expériences en cartographie / Cécile Saint-Marc in Cartes & Géomatique, n° 233 (septembre - novembre 2017)
PermalinkA new GPU bundle adjustment method for large-scale data / Zhou Shunping ; Xiong Xiaodong ; Junfeng Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 9 (September 2017)
PermalinkHomogeneizing GPS integrated water vapour time series: methodology and benchmarking the algorithms on synthetic datasets / Roeland Van Malderen (2017)
![]()
PermalinkÉvaluation de la qualité des sources du Web de Données pour la résolution d'entités nommées / Carmen Brando in Ingénierie des systèmes d'information, ISI : Revue des sciences et technologies de l'information, RSTI, vol 21 n° 5 - 6 (septembre - décembre 2016)
PermalinkDeep filter banks for texture recognition, description, and segmentation / Mircea Cimpoi in International journal of computer vision, vol 118 n° 1 (May 2016)
PermalinkLa manufacture de l'évaluation scientifique : algorithmes, jeux de données et outils bibliométriques / David Pontille in Réseaux, vol 31 n° 177 (février - avril 2013)
PermalinkNotes et avis des consommateurs sur le web : les marchés à l'épreuve de l'évaluation profane / Thomas Beauvisage in Réseaux, vol 31 n° 177 (février - avril 2013)
PermalinkGeneration of a consistent absolute phase center correction model for GPS receiver and satellite antennas / Ralf Schmid in Journal of geodesy, vol 81 n° 12 (December 2007)
PermalinkDigital bathymetric models from rational profiles / R.M. Marin in Surveying and land information science, vol 64 n° 4 (01/12/2004)
PermalinkOn the accuracy of kinematic carrier phase GPS for airborne mapping / A.M. Bruton in Geomatica, vol 55 n° 4 (December 2001)
Permalink