Descripteur



Etendre la recherche sur niveau(x) vers le bas
Accurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits / Tawanda W. Gara in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
![]()
[article]
Titre : Accurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits Type de document : Article/Communication Auteurs : Tawanda W. Gara, Auteur ; Roshanak Darvishzadeh, Auteur ; Andrew K. Skidmore, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 108 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Bavière (Allemagne)
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] écosystème forestier
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] indice foliaire
[Termes descripteurs IGN] Leaf mass per area
[Termes descripteurs IGN] photosynthèse
[Termes descripteurs IGN] variation saisonnièreRésumé : (Auteur) Leaf traits at canopy level (hereinafter canopy traits) are conventionally expressed as a product of total canopy leaf area index (LAI) and leaf trait content based on samples collected from the exposed upper canopy. This traditional expression is centered on the theory that absorption of incident photosynthetically active radiation (PAR) follow a bell-shaped function skewed to the upper canopy. However, the validity of this theory has remained untested for a suite of canopy traits in a temperate forest ecosystem across multiple seasons using multispectral imagery. In this study, we examined the effect of canopy traits expression in modelling canopy traits using Sentinel-2 multispectral data across the growing season in Bavaria Forest National Park (BFNP), Germany. To achieve this, we measured leaf mass per area (LMA), chlorophyll (Cab), nitrogen (N) and carbon content and LAI from the exposed upper and shaded lower canopy respectively over three seasons (spring, summer and autumn). Subsequently, we estimated canopy traits using two expressions, i.e. the traditional expression-based on the product of LAI and leaf traits content of samples collected from the sunlit upper canopy (hereinafter top-of-canopy expression) and the weighted expression - established on the proportion between the shaded lower and sunlit upper canopy LAI and their respective leaf traits content. Using a Random Forest machine-learning algorithm, we separately modelled canopy traits estimated from the two expressions using Sentinel-2 spectral bands and vegetation indices. Our results showed that dry matter related canopy traits (LMA, N and carbon) estimated based on the weighted canopy expression yield stronger correlations and higher prediction accuracy (NRMSECV 0.48 µg/cm2) across all seasons. We also developed a generalized model that explained 52.57–67.82% variation in canopy traits across the three seasons. Using the most accurate Random Forest model for each season, we demonstrated the capability of Sentinel-2 data to map seasonal dynamics of canopy traits across the park. Results presented in this study revealed that canopy trait expression can have a profound effect on modelling the accuracy of canopy traits using satellite imagery throughout the growing seasons. These findings have implications on model accuracy when monitoring the dynamics of ecosystem functions, processes and services. Numéro de notice : A2019-493 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.005 date de publication en ligne : 11/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93725
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 108 - 123[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019113 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis / Tao Cheng in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)
[article]
Titre : Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis Type de document : Article/Communication Auteurs : Tao Cheng, Auteur ; Benoit Rivard, Auteur ; Arturo G. Sanchez-Azofeifa, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 28 - 38 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] biomasse (combustible)
[Termes descripteurs IGN] carbone
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] indice foliaire
[Termes descripteurs IGN] Leaf mass per area
[Termes descripteurs IGN] modèle physique
[Termes descripteurs IGN] ondelette
[Termes descripteurs IGN] réflectance végétale
[Termes descripteurs IGN] réponse spectrale
[Termes descripteurs IGN] teneur en matière sèche
[Termes descripteurs IGN] transformation en ondelettesRésumé : (Auteur) Leaf mass per area (LMA), the ratio of leaf dry mass to leaf area, is a trait of central importance to the understanding of plant light capture and carbon gain. It can be estimated from leaf reflectance spectroscopy in the infrared region, by making use of information about the absorption features of dry matter. This study reports on the application of continuous wavelet analysis (CWA) to the estimation of LMA across a wide range of plant species. We compiled a large database of leaf reflectance spectra acquired within the framework of three independent measurement campaigns (ANGERS, LOPEX and PANAMA) and generated a simulated database using the PROSPECT leaf optical properties model. CWA was applied to the measured and simulated databases to extract wavelet features that correlate with LMA. These features were assessed in terms of predictive capability and robustness while transferring predictive models from the simulated database to the measured database. The assessment was also conducted with two existing spectral indices, namely the Normalized Dry Matter Index (NDMI) and the Normalized Difference index for LMA (NDLMA). Five common wavelet features were determined from the two databases, which showed significant correlations with LMA (R2: 0.51–0.82, p Numéro de notice : A2014-009 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32914
in ISPRS Journal of photogrammetry and remote sensing > vol 87 (January 2014) . - pp 28 - 38[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014011 RAB Revue Centre de documentation En réserve 3L Disponible