Descripteur
Documents disponibles dans cette catégorie (36)



Etendre la recherche sur niveau(x) vers le bas
Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Zhengdong Huang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de trafic
[Termes IGN] graphe
[Termes IGN] logement
[Termes IGN] migration pendulaire
[Termes IGN] modèle de simulation
[Termes IGN] régression géographiquement pondérée
[Termes IGN] service public
[Termes IGN] Shenzhen
[Termes IGN] système de transport intelligent
[Termes IGN] transport public
[Termes IGN] transport urbainRésumé : (auteur) Accurate and robust short-term bus travel prediction facilitates operating the bus fleet to provide comfortable and flexible bus services. The built environment, including land use, buildings, and public facilities, has an important influence on bus travel demand prediction. However, previous studies regarded the built environment as a static feature thus even ignored its influence on bus travel in deep learning framework. To fill this gap, we propose a graph deep learning-based approach coupling with spatiotemporal influence of built environment (GDLBE) to enhance short-term bus travel demand prediction. A time-dependent geographically weighted regression method is used to resolve the dynamic influence of the built environment on bus travel demand at different times of the day. A graph deep learning module is used to capture the comprehensive spatial and temporal dependency behind massive bus travel demand. The short-term bus travel demand is predicted by fusing the dynamic built environment influences and spatiotemporal dependency. An experiment in Shenzhen is conducted to evaluate the performance of the proposed approach. Baseline methods are compared, and the results demonstrate that the proposed approach outperforms the baselines. These results will help bus fleet dispatch for smart transportation. Numéro de notice : A2022-245 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101776 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100185
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101776[article]Clustering with implicit constraints: A novel approach to housing market segmentation / Xiaoqi Zhang in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Clustering with implicit constraints: A novel approach to housing market segmentation Type de document : Article/Communication Auteurs : Xiaoqi Zhang, Auteur ; Yanqiao Zheng, Auteur ; Qiong Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 585 - 608 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme glouton
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] classification par nuées dynamiques
[Termes IGN] contrainte topologique
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] marché foncier
[Termes IGN] programmation par contraintes
[Termes IGN] segmentation
[Termes IGN] structure spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Constrained clustering has been widely studied and outperforms both the traditional unsupervised clustering and experience-oriented approaches. However, the existing literature on constrained clustering concentrates on spatially explicit constraints, while many constraints in housing market studies are implicit. Ignoring the implicit constraints will result in unreliable clustering results. This article develops a novel framework for constrained clustering, which takes implicit constraints into account. Specifically, the research extends the classical greedy searching algorithm by adding one back-and-forth searching step, efficiently coping with the order sensitivity. Via evaluation on both synthetic and real data sets, it turns out that the proposed algorithm outperforms existing algorithms, even when only the traditional pairwise constraints are provided. In an application to a concrete housing market segmentation problem, the proposed algorithm shows its power to accommodate user-specified homogeneity criteria to extract hidden information on the underlying urban spatial structure. Numéro de notice : A2022-362 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12878 Date de publication en ligne : 26/12/2021 En ligne : https://doi.org/10.1111/tgis.12878 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100581
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 585 - 608[article]GIS-based employment availabilities by mode of transport in Kuwait / S. Alkheder in Applied geomatics, vol 14 n° 1 (March 2022)
![]()
[article]
Titre : GIS-based employment availabilities by mode of transport in Kuwait Type de document : Article/Communication Auteurs : S. Alkheder, Auteur ; Waleed Abdullah, Auteur ; Hussain Al Sayegh, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 15 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse spatiale
[Termes IGN] données socio-économiques
[Termes IGN] établissement d'enseignement
[Termes IGN] Koweit
[Termes IGN] logement
[Termes IGN] réseau de transport
[Termes IGN] système d'information géographique
[Termes IGN] trafic routier
[Termes IGN] transport public
[Termes IGN] travail
[Termes IGN] véhicule automobileRésumé : (auteur) Public transit (PT) has a positive impact on social and environment development in any society. This paper was carried out to analyze the role of GIS in utilizing destination identification as a way to help accomplish a sustainable landscape. The work focused on enhancing work availability considering the transport network. Areas with a higher offer of zero-vehicle lodging units have a better employment availability by travel. Furthermore, areas with a higher offer of single-parent families are at a disadvantage in general occupation openness. In this paper, GIS-based employment availabilities by walking, transit, and automobile were processed for the metropolitan territory. The same was done for work availability among neighboring square gatherings, while regulating built-environment and socio-economic variables. Understanding public travel openness is imperative for encouraging mode movements to reduce auto dependence and is fundamental for the prosperity of non-car households. Also, it is important to know the distribution of facilities such as schools, universities, malls, and other socio-economic places, which helps in rearranging these places in a better way to have effective transit and to reduce road traffic. The accessibility analysis is done through three steps: identifying the spatial distribution in the area, creating buffers around each alternative, and calculating the total number of population and services served by the network. The overall results of this study show that the proposed network will cover more than 50% of school places and workplaces in the area. It will also serve about 840,000 inhabitants, which is 34% of the total population. The previous results make the network accessible to a large number of the area’s residents and will connect them with the main attraction points in the city. Numéro de notice : A2022-215 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s12518-021-00406-y Date de publication en ligne : 18/10/2021 En ligne : https://doi.org/10.1007/s12518-021-00406-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100085
in Applied geomatics > vol 14 n° 1 (March 2022) . - pp 1 - 15[article]A geographically weighted artificial neural network / Julian Haguenauer in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : A geographically weighted artificial neural network Type de document : Article/Communication Auteurs : Julian Haguenauer, Auteur ; Marco Helbich, Auteur Année de publication : 2022 Article en page(s) : pp 215 - 235 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] analyse de sensibilité
[Termes IGN] Autriche
[Termes IGN] coût
[Termes IGN] évaluation foncière
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] régression géographiquement pondérée
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal artificielRésumé : (auteur) While recent developments have extended geographically weighted regression (GWR) in many directions, it is usually assumed that the relationships between the dependent and the independent variables are linear. In practice, however, it is often the case that variables are nonlinearly associated. To address this issue, we propose a geographically weighted artificial neural network (GWANN). GWANN combines geographical weighting with artificial neural networks, which are able to learn complex nonlinear relationships in a data-driven manner without assumptions. Using synthetic data with known spatial characteristics and a real-world case study, we compared GWANN with GWR. While the results for the synthetic data show that GWANN performs better than GWR when the relationships within the data are nonlinear and their spatial variance is high, the results based on the real-world data demonstrate that the performance of GWANN can also be superior in a practical setting. Numéro de notice : A2022-162 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1871618 Date de publication en ligne : 08/02/2021 En ligne : https://doi.org/10.1080/13658816.2021.1871618 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99785
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 215 - 235[article]Multiscale geographically and temporally weighted regression with a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in Beijing / Zhi Zhang in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
![]()
[article]
Titre : Multiscale geographically and temporally weighted regression with a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in Beijing Type de document : Article/Communication Auteurs : Zhi Zhang, Auteur ; Jing Li, Auteur ; Fung, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2262 - 2286 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] coût
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] marché foncier
[Termes IGN] Pékin (Chine)
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) Geographically and temporally weighted regression (GTWR) has been demonstrated as an effective tool for exploring spatiotemporal data under spatial and temporal heterogeneity. Exploiting the advantages of the two most popular GTWR methods, we propose an alternative GTWR with a good balance between complexity and interpretability via a unilateral temporal weighting scheme called unilateral GTWR (UGTWR). When compared to the other two popular GTWR methods, the simulation experiment shows that UGTWR has comparable estimation accuracy and model fit, but it is more efficient. Furthermore, we propose its multiscale extension, coined multiscale UGTWR (MUGTWR), to characterize the spatiotemporal dynamic regression relationships at multiple scales. The proposed MUGTWR was applied to the analysis of house prices in the period of 2014–2018 in Beijing as a case study. Our analysis reveals that MUGTWR can effectively capture different levels of spatiotemporal heterogeneity in selected factors affecting house prices at different scales. Therefore, this study is useful for the formulation of housing policy in which the spatiotemporal dynamics of house prices with respect to specific factors can be considered. Numéro de notice : A2021-758 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1912348 Date de publication en ligne : 12/05/2021 En ligne : https://doi.org/10.1080/13658816.2021.1912348 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98773
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2262 - 2286[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible Identifying home locations in human mobility data: an open-source R package for comparison and reproducibility / Qingqing Chen in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
PermalinkMachine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices / Linchuan Yang in Annals of GIS, vol 27 n° 3 (July 2021)
PermalinkSpatial multi-criteria evaluation in 3D context: suitability analysis of urban vertical development / Kendra Munn in Cartography and Geographic Information Science, vol 48 n° 2 (March 2021)
PermalinkUne base de données pour étudier vingt années de dynamiques du marché immobilier résidentiel en Île-de-France / Thibault Le Corre in Cybergeo, European journal of geography, n° 2021 ([01/02/2021])
PermalinkEstimating the impacts of proximity to public transportation on residential property values: An empirical analysis for Hartford and Stamford areas, Connecticut / Bo Zhang in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
PermalinkPermalinkDecentralized markets and the emergence of housing wealth inequality / Omar A. Guerrero in Computers, Environment and Urban Systems, vol 84 (November 2020)
PermalinkDelineating and modeling activity space using geotagged social media data / Lingqian Hu in Cartography and Geographic Information Science, vol 47 n° 3 (May 2020)
PermalinkImmigration and future housing needs in Switzerland: Agent-based modelling of agglomeration Lausanne / Marcello Marini in Computers, Environment and Urban Systems, vol 78 (November 2019)
PermalinkDelineation of vacant building land using orthophoto and lidar data object classification / Dejan Jenko in Geodetski vestnik, vol 63 n° 3 (September - November 2019)
Permalink