Descripteur
Documents disponibles dans cette catégorie (29)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
On study of the Earth topography correction for the GRACE surface mass estimation / Fan Yang in Journal of geodesy, vol 96 n° 12 (December 2022)
[article]
Titre : On study of the Earth topography correction for the GRACE surface mass estimation Type de document : Article/Communication Auteurs : Fan Yang, Auteur ; Zhicai Luo, Auteur ; Hao Zhou, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 95 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GRACE
[Termes IGN] formule de Stokes
[Termes IGN] géoïde gravimétrique
[Termes IGN] itération
[Termes IGN] masse de la Terre
[Termes IGN] topographieRésumé : (auteur) Traditional conversion from gravity Stokes coefficients into the surface mass, e.g., in the GRACE(-FO) applications, presumes the Earth as a perfect sphere that is apparently against the reality. Recent studies manage to correct the conversion by considering the Earth’s oblateness, in another word, the Earth is treated as an ellipsoid. However, the Earth’s geometry is far more complicated due to the topography, so that neither a sphere nor an ellipsoid is exact. Evidences from recent studies and this one demonstrate that any geometrical approximation of the Earth shape like a presumed sphere will inevitably lead to a bias in the surface mass estimation from GRACE gravity fields, resulting in a possible misinterpretation of geophysical signals that may occur in polar regions or mountain areas. In this context, we propose an iterative scaling factor method to numerically realize a more accurate surface mass estimate, considering a more realistic geometry of the Earth including its oblateness, topography and geoid undulation. Verified with a series of simulations, the proposed method is found to be efficient (less than four iterations), reliable (after a broad range of tests) and universally accurate (reducing at least 80% of the bias). Relative to our method, the mean linear trend in 2002–2015 estimated from GRACE under an ideal spherical Earth is found to be underestimated by about 3.1% and 5.5% over Greenland and West Antarctica, respectively. Among the trend underestimation, the topography-related contribution takes up − 0.5% (0.79 Gt/yr, the negative sign denotes an overestimation) and − 0.4% (0.34 Gt/yr), respectively. Although the value is small, it is a systematic bias worth considering, for example, it is greater than the influence (0.3 Gt/yr on the trend estimation over West Antarctica) by switching atmospherical de-aliasing products from RL05 to RL06. Besides, the topography-induced bias rapidly increases to 2.7% (0.26 mm/yr) at mountain Himalayas, which is even larger than the ellipsoid-induced bias (0.19 mm/yr). Based on the results obtained so far, the topography-induced bias is found to be roughly one order of magnitude smaller than GRACE’s present measurement error; nevertheless, it will be relevant once the GRACE is improved toward its baseline accuracy. In particular, the topography correction should be considered for NGGM that expects to map the Earth gravity field in an unprecedented accuracy and spatial resolution. Numéro de notice : A2022-878 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s00190-022-01683-0 Date de publication en ligne : 02/12/2022 En ligne : https://doi.org/10.1007/s00190-022-01683-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102189
in Journal of geodesy > vol 96 n° 12 (December 2022) . - n° 95[article]An analysis of gravitational gradients in rotated frames and their relation to oriented mass sources / Isabelle Panet in Journal of geophysical research : Solid Earth, vol 123 n° 12 (December 2018)
[article]
Titre : An analysis of gravitational gradients in rotated frames and their relation to oriented mass sources Type de document : Article/Communication Auteurs : Isabelle Panet , Auteur Année de publication : 2018 Projets : TOSCA / Article en page(s) : pp 11062 -11090 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse de sensibilité
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] gradient de gravitation
[Termes IGN] levé gravimétrique
[Termes IGN] masse de la Terre
[Termes IGN] modèle de géopotentiel
[Termes IGN] repère de référenceRésumé : (auteur) Many mass sources within the Earth and its fluid envelopes show elongated geometries, aligning with the orientations of plate boundaries and plate motions, coastlines, rivers, and drainage basins for instance. To enhance their identification and separation in global or regional gravity observations and models, a dedicated method based on gravitational gradients analysis is presented here. This approach provides a detailed description of the geographic pattern of the gravity variations, which are accurately mapped thanks to the regular spatial coverage of high‐accuracy satellite data and arise from lateral density changes within the planet. First, gravity gradients are defined at different spatial scales in spherical frames, which are rotated along the radial axis according to the orientation of the source. The sensitivity of these gradients to the mass distribution inside a spherical Earth is described and analytical expressions relating the source to the observable are introduced. Then, the gravity gradients responses at different spatial scales to flat, elementary mass sources located at the surface and at increasing depth are studied. Specifically, the paper investigates how a source width and orientation can be determined, for localized and oscillatory mass anomalies with different width‐to‐length aspect ratios. This theoretical case study aims at providing a basis for the analysis of more complex mass structures, when applying the presented method to static or time‐varying satellite gravity field models. It may help deciphering the nature of the gravity sources by the detection of meaningful geometries and orientations in the gravity field. Numéro de notice : A2018-655 Affiliation des auteurs : Géodésie (mi2018-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2018JB016717 Date de publication en ligne : 05/12/2018 En ligne : https://doi.org/10.1029/2018JB016717 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93520
in Journal of geophysical research : Solid Earth > vol 123 n° 12 (December 2018) . - pp 11062 -11090[article]Topographic gravitational potential up to second-order derivatives: an examination of approximation errors caused by rock-equivalent topography (RET) / Michael Kuhns in Journal of geodesy, vol 90 n° 9 (September 2016)
[article]
Titre : Topographic gravitational potential up to second-order derivatives: an examination of approximation errors caused by rock-equivalent topography (RET) Type de document : Article/Communication Auteurs : Michael Kuhns, Auteur ; Christian Hirt, Auteur Année de publication : 2016 Article en page(s) : pp 883 – 902 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] erreur d'approximation
[Termes IGN] glace
[Termes IGN] masse d'eau
[Termes IGN] masse de la Terre
[Termes IGN] modèle de densité
[Termes IGN] potentiel de pesanteur terrestre
[Termes IGN] rocheRésumé : (auteur) In gravity forward modelling, the concept of Rock-Equivalent Topography (RET) is often used to simplify the computation of gravity implied by rock, water, ice and other topographic masses. In the RET concept, topographic masses are compressed (approximated) into equivalent rock, allowing the use of a single constant mass–density value. Many studies acknowledge the approximate character of the RET, but few have attempted yet to quantify and analyse the approximation errors in detail for various gravity field functionals and heights of computation points. Here, we provide an in-depth examination of approximation errors associated with the RET compression for the topographic gravitational potential and its first- and second-order derivatives. Using the Earth2014 layered topography suite we apply Newtonian integration in the spatial domain in the variants (a) rigorous forward modelling of all mass bodies, (b) approximative modelling using RET. The differences among both variants, which reflect the RET approximation error, are formed and studied for an ensemble of 10 different gravity field functionals at three levels of altitude (on and 3 km above the Earth’s surface and at 250 km satellite height). The approximation errors are found to be largest at the Earth’s surface over RET compression areas (oceans, ice shields) and to increase for the first- and second-order derivatives. Relative errors, computed here as ratio between the range of differences between both variants relative to the range in signal, are at the level of 0.06–0.08 % for the potential, ∼3–7 % for the first-order derivatives at the Earth’s surface (∼0.1 % at satellite altitude). For the second-order derivatives, relative errors are below 1 % at satellite altitude, at the 10–20 % level at 3 km and reach maximum values as large as ∼20 to 110 % near the surface. As such, the RET approximation errors may be acceptable for functionals computed far away from the Earth’s surface or studies focussing on the topographic potential only. However, for derivatives of the functionals computed near the Earth’s surface, the use of RET introduces very spurious errors, in some cases as large as the signal, rendering it useless for smoothing or reducing of field observation, thus rigorous mass modelling should be used for both spatial and spectral domain methods. Numéro de notice : A2016-657 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-016-0917-6 En ligne : http://dx.doi.org/10.1007/s00190-016-0917-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81859
in Journal of geodesy > vol 90 n° 9 (September 2016) . - pp 883 – 902[article]Fast computation of general forward gravitation problems / Fabien Casenave in Journal of geodesy, vol 90 n° 7 (July 2016)
[article]
Titre : Fast computation of general forward gravitation problems Type de document : Article/Communication Auteurs : Fabien Casenave , Auteur ; Laurent Métivier , Auteur ; Gwendoline Pajot-Métivier , Auteur ; Isabelle Panet , Auteur Année de publication : 2016 Article en page(s) : pp 655 – 675 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] France (géographie physique)
[Termes IGN] masse de la Terre
[Termes IGN] potentiel de pesanteur terrestre
[Termes IGN] vitesseRésumé : (auteur) We consider the well-known problem of the forward computation of the gradient of the gravitational potential generated by a mass density distribution of general 3D geometry. Many methods have been developed for given geometries, and the computation time often appears as a limiting practical issue for considering large or complex problems. In this work, we develop a fast method to carry out this computation, where a tetrahedral mesh is used to model the mass density distribution. Depending on the close- or long-range nature of the involved interactions, the algorithm automatically switches between analytic integration formulae and numerical quadratic formulae, and relies on the Fast Multipole Method to drastically increase the computation speed of the long-range interactions. The parameters of the algorithm are empirically chosen for the computations to be the fastest possible while guarantying a given relative accuracy of the result. Computations that would load many-core clusters for days can now be carried out on a desk computer in minutes. The computation of the contribution of topographical masses to the Earth’s gravitational field at the altitude of the GOCE satellite and over France are proposed as numerical illustrations of the method. Numéro de notice : A2016-427 Affiliation des auteurs : LASTIG LAREG (2012-mi2018) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-016-0900-2 Date de publication en ligne : 08/04/2016 En ligne : http://dx.doi.org/ 10.1007/s00190-016-0900-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81321
in Journal of geodesy > vol 90 n° 7 (July 2016) . - pp 655 – 675[article]Contribution of mass density heterogeneities to the quasigeoid-to-geoid separation / Robert Tenzer in Journal of geodesy, vol 90 n° 1 (January 2016)
[article]
Titre : Contribution of mass density heterogeneities to the quasigeoid-to-geoid separation Type de document : Article/Communication Auteurs : Robert Tenzer, Auteur ; Christian Hirt, Auteur ; Pavel Novák, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 65-80 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] anomalie de pesanteur
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] harmonique sphérique
[Termes IGN] masse de la Terre
[Termes IGN] modèle de densité
[Termes IGN] quasi-géoïde
[Termes IGN] topographieRésumé : (auteur) The geoid-to-quasigeoid separation is often computed only approximately as a function of the simple planar Bouguer gravity anomaly and the height of the computation point while disregarding the contributions of terrain geometry and anomalous topographic density as well as the sub-geoid masses. In this study we demonstrate that these contributions are significant and, therefore, should be taken into consideration when investigating the relation between the normal and orthometric heights particularly in the mountainous, polar and geologically complex regions. These contributions are evaluated by applying the spectral expressions for gravimetric forward modelling and using the EIGEN-6C4 gravity model, the Earth2014 datasets of terrain, ice thickness and inland bathymetry and the CRUST1.0 sediment and (consolidated) crustal density data. Since the global crustal density models currently available (e.g. CRUST1.0) have a limited accuracy and resolution, the comparison of individual density contributions is—for consistency—realized with a limited spectral resolution up to a spherical harmonic degree 360 (or 180). The results reveal that the topographic contribution globally varies between −0.33 and 0.57 m, with maxima in Himalaya and Tibet. The contribution of ice considerably modifies the geoid-to-quasigeoid separation over large parts of Antarctica and Greenland, where it reaches ∼0.2 m. The contributions of sediments and bedrock are less pronounced, with the values typically varying only within a few centimetres. These results, however, have still possibly large uncertainties due to the lack of information on the actual sediment and bedrock density. The contribution of lakes is mostly negligible; its maxima over the Laurentian Great Lakes and the Baikal Lake reach only several millimetres. The contribution of the sub-geoid masses is significant. It is everywhere negative and reaches extreme values of −4.43 m. According to our estimates, the geoid-to-quasigeoid separation globally varies within −4.19 and 0.26 m while the corresponding values computed according to a classical definition are only negative and reach extreme values of −3.5 m. A comparison of these results reveals that inaccuracies caused by disregarding the terrain geometry and mass density heterogeneities distributed within the topography and below the geoid surface can reach ±2 m or more in the mountainous regions. Numéro de notice : A2016-019 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0858-5 Date de publication en ligne : 01/10/2015 En ligne : https://doi.org/10.1007/s00190-015-0858-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79466
in Journal of geodesy > vol 90 n° 1 (January 2016) . - pp 65-80[article]Exploring mass variations in the Earth system / Mike Sips in Cartography and Geographic Information Science, Vol 43 n° 1 (January 2016)PermalinkVol 43 n° 1 - January 2016 - GeoVisual analytics: Interactivity, dynamics, and scale (Bulletin de Cartography and Geographic Information Science) / Gennady AdrienkoPermalinkRevisiting the pole tide for and from satellite altimetry / Shailen Desai in Journal of geodesy, vol 89 n° 12 (december 2015)PermalinkTime variable Earth’s gravity field from SLR satellites / Krzysztof Sosnica in Journal of geodesy, vol 89 n° 10 (october 2015)PermalinkCenter-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES / Toshimichi Otsubo in Journal of geodesy, vol 89 n° 4 (April 2015)PermalinkConsistent estimates of the dynamic figure parameters of the Earth / Wei Chen in Journal of geodesy, vol 89 n° 2 (February 2015)PermalinkSecular changes in Earth’s shape and surface mass loading derived from combinations of reprocessed global GPS networks / david Booker in Journal of geodesy, vol 88 n° 9 (September 2014)PermalinkPermalinkContinental mass change from GRACE over 2002–2011 and its impact on sea level / O. Baur in Journal of geodesy, vol 87 n° 2 (February 2013)PermalinkThe effect of using inconsistent ocean tidal loading models on GPS coordinate solutions / Y. Fu in Journal of geodesy, vol 86 n° 6 (June 2012)Permalink