Descripteur



Etendre la recherche sur niveau(x) vers le bas
Land cover harmonization using Latent Dirichlet Allocation / Zhan Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Land cover harmonization using Latent Dirichlet Allocation Type de document : Article/Communication Auteurs : Zhan Li, Auteur ; Joanne C. White, Auteur ; Michael A. Wulder, Auteur Année de publication : 2021 Article en page(s) : pp 348 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] allocation de Dirichlet latente
[Termes descripteurs IGN] Canada
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] chevauchement
[Termes descripteurs IGN] erreur de classification
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] harmonisation des données
[Termes descripteurs IGN] matrice d'erreur
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Large-area land cover maps are produced to satisfy different information needs. Land cover maps having partial or complete spatial and/or temporal overlap, different legends, and varying accuracies for similar classes, are increasingly common. To address these concerns and combine two 30-m resolution land cover products, we implemented a harmonization procedure using a Latent Dirichlet Allocation (LDA) model. The LDA model used regionalized class co-occurrences from multiple maps to generate a harmonized class label for each pixel by statistically characterizing land attributes from the class co-occurrences. We evaluated multiple harmonization approaches: using the LDA model alone and in combination with more commonly used information sources for harmonization (i.e. error matrices and semantic affinity scores). The results were compared with the benchmark maps generated using simple legend crosswalks and showed that using LDA outputs with error matrices performed better and increased harmonized map overall accuracy by 6–19% for areas of disagreement between the source maps. Our results revealed the importance of error matrices to harmonization, since excluding error matrices reduced overall accuracy by 4–20%. The LDA-based harmonization approach demonstrated in this paper is quantitative, transparent, portable, and efficient at leveraging the strengths of multiple land cover maps over large areas. Numéro de notice : A2021-027 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1796131 date de publication en ligne : 27/07/2020 En ligne : https://doi.org/10.1080/13658816.2020.1796131 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96701
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 348 - 374[article]The weight matrix determination of systematic bias calibration for a laser altimeter / Ma Yue in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 11 (November 2016)
![]()
[article]
Titre : The weight matrix determination of systematic bias calibration for a laser altimeter Type de document : Article/Communication Auteurs : Ma Yue, Auteur ; Li Song, Auteur ; Lu Xiushan, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 847 - 852 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] données IceSat-Glas
[Termes descripteurs IGN] erreur de mesure
[Termes descripteurs IGN] étalonnage
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] incertitude de mesurage
[Termes descripteurs IGN] matrice
[Termes descripteurs IGN] matrice d'erreurRésumé : (Auteur) The geolocation accuracy of satellite laser altimeters is significantly influenced by on-orbit misalignment and ranging biases. Few researchers have investigated the weight matrix determination method, which plays a critical role in bias estimation. In this article, a systematic misalignment and ranging bias model was deduced. Based on the least squares criterion, a bias calibration method was designed for use with solid natural surfaces; and the weight matrix was defined according to the ranging uncertainty theory. Referring to the Geoscience Laser Altimeter System (glas) parameters, the established model and method were verified using programming simulations, which indicated with a misalignment of tens of arc-seconds in the pitch and roll directions and a ranging bias of several centimeters, by using the weight matrix, the estimation accuracies of the misalignment and ranging bias increased by 0.22 and 2 cm, respectively. Consequently, the geolocation accuracy increased by approximately 0.64 m horizontally and 3 cm vertically for a 1° sloping surface. Numéro de notice : A2016-944 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article En ligne : http://dx.doi.org/10.14358/PERS.82.11.847 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83436
in Photogrammetric Engineering & Remote Sensing, PERS > vol 82 n° 11 (November 2016) . - pp 847 - 852[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 105-2016112 RAB Revue Centre de documentation En réserve 3L Disponible 105-2016111 SL Revue Centre de documentation Revues en salle Disponible A measure of average error variance of line features / Eryong Liu in Cartography and Geographic Information Science, Vol 43 n° 4 (September 2016)
![]()
[article]
Titre : A measure of average error variance of line features Type de document : Article/Communication Auteurs : Eryong Liu, Auteur ; Wenzhong Shi, Auteur Année de publication : 2016 Article en page(s) : pp 321 - 327 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] erreur de positionnement
[Termes descripteurs IGN] erreur moyenne
[Termes descripteurs IGN] interpolation cubique
[Termes descripteurs IGN] interpolation linéaire
[Termes descripteurs IGN] ligne caractéristique
[Termes descripteurs IGN] matrice d'erreur
[Termes descripteurs IGN] matrice de covariance
[Termes descripteurs IGN] objet géographique linéaire
[Termes descripteurs IGN] propagation d'erreur
[Termes descripteurs IGN] qualité des donnéesRésumé : (Auteur) This article presents a new development in measuring the positional error of line features in Geographic Information Systems (GIS), in the form of a new measure for estimating the average error variance of line features, including line segment, polyline, polygon, and curved lines. This average error measure is represented in the form of a covariance matrix derived by an analytical approach. Corresponding error indicators are derived from this matrix. The error of line features mainly results from two factors: (1) an error propagated from the original component points of line features and (2) a model error of interpolation between these points. In this study, a method of average error estimation has been derived regarding the first type error of line features that are interpolated by either linear or cubic interpolation methods. The main contribution of the research is the provision of an error measure to assess the quality of spatial data in application settings. The proposed error models for estimating average error variance of line features in a GIS are illustrated by both simulated and practical experiments. The results show that the line accuracy from a linear interpolation is better than a line interpolated using a cubic model. Numéro de notice : A2016-417 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : https://doi.org/10.1080/15230406.2015.1077738 En ligne : https://doi.org/10.1080/15230406.2015.1077738 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81312
in Cartography and Geographic Information Science > Vol 43 n° 4 (September 2016) . - pp 321 - 327[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2016041 SL Revue Centre de documentation Revues en salle Disponible Spectral angle mapper and object-based classification combined with hyperspectral remote sensing imagery for obtaining land use/cover mapping in a Mediterranean region / George P. Petropoulos in Geocarto international, vol 28 n° 1-2 (February - May 2013)
![]()
[article]
Titre : Spectral angle mapper and object-based classification combined with hyperspectral remote sensing imagery for obtaining land use/cover mapping in a Mediterranean region Type de document : Article/Communication Auteurs : George P. Petropoulos, Auteur ; Krishna Prasad Vadrevu, Auteur ; Chariton Kalaitzidis, Auteur Année de publication : 2013 Article en page(s) : pp 114 - 129 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] classification Spectral angle mapper
[Termes descripteurs IGN] image EO1-Hyperion
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image Quickbird
[Termes descripteurs IGN] littoral méditerranéen
[Termes descripteurs IGN] matrice d'erreur
[Termes descripteurs IGN] occupation du solRésumé : (Auteur) In this study, we test the potential of two different classification algorithms, namely the spectral angle mapper (SAM) and object-based classifier for mapping the land use/cover characteristics using a Hyperion imagery. We chose a study region that represents a typical Mediterranean setting in terms of landscape structure, composition and heterogeneous land cover classes. Accuracy assessment of the land cover classes was performed based on the error matrix statistics. Validation points were derived from visual interpretation of multispectral high resolution QuickBird-2 satellite imagery. Results from both the classifiers yielded more than 70% classification accuracy. However, the object-based classification clearly outperformed the SAM by 7.91% overall accuracy (OA) and a relatively high kappa coefficient. Similar results were observed in the classification of the individual classes. Our results highlight the potential of hyperspectral remote sensing data as well as object-based classification approach for mapping heterogeneous land use/cover in a typical Mediterranean setting. Numéro de notice : A2013-278 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2012.668950 date de publication en ligne : 02/04/2012 En ligne : https://doi.org/10.1080/10106049.2012.668950 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32416
in Geocarto international > vol 28 n° 1-2 (February - May 2013) . - pp 114 - 129[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2013011 RAB Revue Centre de documentation En réserve 3L Disponible Generalization-oriented road line classification by means of an artificial neural network / J.L. Garcia Balboa in Geoinformatica, vol 12 n° 3 (September - November 2008)
[article]
Titre : Generalization-oriented road line classification by means of an artificial neural network Type de document : Article/Communication Auteurs : J.L. Garcia Balboa, Auteur ; Francisco Javier Ariza-López, Auteur Année de publication : 2008 Article en page(s) : pp 289 - 312 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] acquisition de connaissances
[Termes descripteurs IGN] analyse en composantes principales
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] axe médian
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] généralisation cartographique automatisée
[Termes descripteurs IGN] matrice d'erreur
[Termes descripteurs IGN] objet géographique linéaire
[Termes descripteurs IGN] route
[Termes descripteurs IGN] segmentation
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) In line generalization, a first goal to achieve is the classification of features previous to the selection of processes and parameters. A feed forward backpropagation artificial neural network (ANN) is designed for classifying a set of road lines through a supervised learning process, attempting to emulate a classification performed by a human expert for cartographic generalization purposes. The main steps of the process are presented in this paper: (a) experimental data selection; (b) segmentation of lines into homogeneous sections, (c) sections enrichment through a set of quantitative measures derived from a principal component analysis, and qualitative information derived from road network and road type; (d) expert classification of the sections; and finally (e) the ANN design, training and validation. The quality of results is analyzed by means of error matrices after a cross-validation process giving a goodness, or percentage of agreement, over 83%. Copyright Springer Numéro de notice : A2008-282 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29275
in Geoinformatica > vol 12 n° 3 (September - November 2008) . - pp 289 - 312[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 057-08031 RAB Revue Centre de documentation En réserve 3L Disponible Comparing accuracy assessments to infer superiority of image classification methods / J. De Leleuw in International Journal of Remote Sensing IJRS, vol 27 n°1-2 (January 2006)
PermalinkA comparison of sampling schemes used in generating error matrices for assessing the accuracy of maps generated from remotely sensed data / Russell G. Congalton in Photogrammetric Engineering & Remote Sensing, PERS, vol 54 n° 5 (may 1988)
PermalinkUsing classification error matrices to improve the accuracy of weighted land-cover models / S.P. Prisley in Photogrammetric Engineering & Remote Sensing, PERS, vol 53 n° 9 (september 1987)
Permalink