Descripteur
Documents disponibles dans cette catégorie (36)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Domain adaptation in segmenting historical maps: A weakly supervised approach through spatial co-occurrence / Sidi Wu in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
[article]
Titre : Domain adaptation in segmenting historical maps: A weakly supervised approach through spatial co-occurrence Type de document : Article/Communication Auteurs : Sidi Wu, Auteur ; Konrad Schindler, Auteur ; Magnus Heitzler, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 199 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte ancienne
[Termes IGN] cartographie historique
[Termes IGN] classification dirigée
[Termes IGN] détection de changement
[Termes IGN] données anciennes
[Termes IGN] matrice de co-occurrence
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation d'image
[Termes IGN] vision par ordinateurRésumé : (auteur) Historical maps depict past states of the Earth’s surface and make it possible to trace the natural or anthropogenic evolution of geographic objects back through time. However, the state of the depicted reality is not the only source of change: maps of varying age can differ in terms of graphical design, and also in terms of storage conditions, physical ageing of pigments, and the scanning process for digitization. Consequently, a computer vision system learned from a specific (source) map series will often not generalize well to older or newer (target) maps, calling for domain adaptation. In the present paper we examine – to our knowledge for the first time – domain adaptation for segmenting historical maps. We argue that for geo-spatial data like maps, which are geo-localized by definition, the spatial co-occurrence of geographical objects provides a supervision signal for domain adaptation. Since only a subset of all mapped objects co-occur, and even those are not perfectly aligned due to both real topographic changes and variations in map generalization/production, they only provide weak supervision — still they can bring a substantial benefit over completely unsupervised domain adaptation methods. The core of our proposed method is a novel self-supervised co-occurrence network that detects co-occurring objects across maps (specifically, domains) with a novel loss function that allows for object changes and spatial misalignment. Experiments show that, for the task of segmenting hydrological objects such as rivers, lakes and wetlands, our system significantly outperforms two state-of-art baselines, even with limited supervision (e.g., 5%). The source code is publicly available at https://github.com/sian-wusidi/spatialcooccurrence. Numéro de notice : A2023-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2023.01.021 Date de publication en ligne : 14/02/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.01.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102804
in ISPRS Journal of photogrammetry and remote sensing > vol 197 (March 2023) . - pp 199 - 211[article]Using Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: a Sri Lanka case study / W.D.K.V. Nandasena in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Using Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: a Sri Lanka case study Type de document : Article/Communication Auteurs : W.D.K.V. Nandasena, Auteur ; Lars Brabyn, Auteur ; Silvia Serrao-Neumanna, Auteur Année de publication : 2023 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] forêt
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] matrice de co-occurrence
[Termes IGN] occupation du sol
[Termes IGN] Sri LankaRésumé : (auteur) Global land cover classifications may lead to the loss of important local and national nuances such as forest and agroforestry classes. These classes are important to local contexts because they contribute to sustainable land management systems. This paper demonstrates the application of Sentinel-2A satellite images, elevation data, and the Google Earth Engine platform to generate more detailed, specialist land cover classification for forestry classes important in Sri Lanka deriving ten spectral, 16 textural, and three topographical features from the input datasets. The random forest classification model discriminates vegetation types as forest, forest plantations, shrub, grassland, home garden, and cultivation with an overall accuracy of 94% and kappa value of 0.91. Results indicate the elevation feature contributes the most to discriminate forest and agroforestry classes, and red band (664.6 nm) textural metrics derived from grey-level co-occurrence matrix analysis are more useful for separating the home garden from other land cover classes. Numéro de notice : A2023-094 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.2022010 Date de publication en ligne : 29/12/2021 En ligne : https://doi.org/10.1080/10106049.2021.2022010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99617
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information / Ozlem Akar in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information Type de document : Article/Communication Auteurs : Ozlem Akar, Auteur ; Esra Tunc Gormus, Auteur Année de publication : 2022 Article en page(s) : pp 6643 - 6670 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte de la végétation
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectrale
[Termes IGN] matrice de co-occurrence
[Termes IGN] niveau de gris (image)
[Termes IGN] texture d'image
[Termes IGN] transformation en ondelettes
[Termes IGN] TurquieRésumé : (auteur) Land use and Land cover (LULC) mapping is one of the most important application areas of remote sensing which requires both spectral and spatial resolutions in order to decrease the spectral ambiguity of different land cover types. Airborne hyperspectral images are among those data which perfectly suits to that kind of applications because of their high number of spectral bands and the ability to see small details on the field. As this technology has newly developed, most of the image processing methods are for the medium resolution sensors and they are not capable of dealing with high resolution images. Therefore, in this study a new framework is proposed to improve the classification accuracy of land use/cover mapping applications and to achieve a greater reliability in the process of mapping land use map using high resolution hyperspectral image data. In order to achieve it, spatial information is incorporated together with spectral information by exploiting feature extraction methods like Grey Level Co-occurrence Matrix (GLCM), Gabor and Morphological Attribute Profile (MAP) on dimensionally reduced image with highest accuracy. Then, machine learning algorithms like Random Forest (RF) and Support Vector Machine (SVM) are used to investigate the contribution of texture information in the classification of high resolution hyperspectral images. In addition to that, further analysis is conducted with object based RF classification to investigate the contribution of contextual information. Finally, overall accuracy, producer’s/user’s accuracy, the quantity and allocation based disagreements and location and quantity based kappa agreements are calculated together with McNemar tests for the accuracy assessment. According to our results, proposed framework which incorporates Gabor texture information and exploits Discrete Wavelet Transform based dimensionality reduction method increase the overall classification accuracy up to 9%. Amongst individual classes, Gabor features boosted classification accuracies of all the classes (soil, road, vegetation, building and shadow) to 7%, 6%, 6%, 8%, 9%, and 24% respectively with producer’s accuracy. Besides, 17% and 10% increase obtained in user’s accuracy with MAP (area) feature in classifying road and shadow classes respectively. Moreover, when the object based classification is conducted, it is seen that the OA of pixel based classification is increased further by 1.07%. An increase between 2% and 4% is achieved with producer’s accuracy in soil, vegetation and building classes and an increase between 1% and 3% is achieved by user’s accuracy in soil, road, vegetation and shadow classes. In the end, accurate LULC map is produced with object based RF classification of gabor features added airborne hyperspectral image which is dimensionally reduced with DWT method. Numéro de notice : A2022-729 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1944453 Date de publication en ligne : 09/11/2021 En ligne : https://doi.org/10.1080/10106049.2021.1944453 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101675
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6643 - 6670[article]Application of a graph convolutional network with visual and semantic features to classify urban scenes / Yongyang Xu in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
[article]
Titre : Application of a graph convolutional network with visual and semantic features to classify urban scenes Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Shuai Jin, Auteur ; Zhanlong Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2009-2034 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] matrice de co-occurrence
[Termes IGN] OpenStreetMap
[Termes IGN] Pékin (Chine)
[Termes IGN] point d'intérêt
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] scène urbaineRésumé : (auteur) Urban scenes consist of visual and semantic features and exhibit spatial relationships among land-use types (e.g. industrial areas are far away from the residential zones). This study applied a graph convolutional network with neighborhood information (henceforth, named the neighbour supporting graph convolutional neural network), to learn spatial relationships for urban scene classification. Furthermore, a co-occurrence analysis with visual and semantic features proceeded to improve the accuracy of urban scene classification. We tested the proposed method with the fifth ring road of Beijing with an overall classification accuracy of 0.827 and a Kappa coefficient of 0.769. In comparison with other methods, such as support vector machine, random forest, and general graph convolutional network, the case study showed that the proposed method improved about 10% in urban scene classification. Numéro de notice : A2022-740 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2048834 Date de publication en ligne : 10/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2048834 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101717
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 2009-2034[article]Estimating urban functional distributions with semantics preserved POI embedding / Weiming Huang in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
[article]
Titre : Estimating urban functional distributions with semantics preserved POI embedding Type de document : Article/Communication Auteurs : Weiming Huang, Auteur ; Lizhen Cui, Auteur ; Meng Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1905 - 1930 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] Chine
[Termes IGN] classe sémantique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage
[Termes IGN] lissage de données
[Termes IGN] matrice de co-occurrence
[Termes IGN] Perceptron multicouche
[Termes IGN] point d'intérêt
[Termes IGN] triangulation de Delaunay
[Termes IGN] zone urbaineRésumé : (auteur) We present a novel approach for estimating the proportional distributions of function types (i.e. functional distributions) in an urban area through learning semantics preserved embeddings of points-of-interest (POIs). Specifically, we represent POIs as low-dimensional vectors to capture (1) the spatial co-occurrence patterns of POIs and (2) the semantics conveyed by the POI hierarchical categories (i.e. categorical semantics). The proposed approach utilizes spatially explicit random walks in a POI network to learn spatial co-occurrence patterns, and a manifold learning algorithm to capture categorical semantics. The learned POI vector embeddings are then aggregated to generate regional embeddings with long short-term memory (LSTM) and attention mechanisms, to take account of the different levels of importance among the POIs in a region. Finally, a multilayer perceptron (MLP) maps regional embeddings to functional distributions. A case study in Xiamen Island, China implements and evaluates the proposed approach. The results indicate that our approach outperforms several competitive baseline models in all evaluation measures, and yields a relatively high consistency between the estimation and ground truth. In addition, a comprehensive error analysis unveils several intrinsic limitations of POI data for this task, e.g. ambiguous linkage between POIs and functions. Numéro de notice : A2022-738 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2022.2040510 Date de publication en ligne : 08/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2040510 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101714
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 1905 - 1930[article]Investigation of recognition and classification of forest fires based on fusion color and textural features of images / Cong Li in Forests, vol 13 n° 10 (October 2022)PermalinkEffective CBIR based on hybrid image features and multilevel approach / D. Latha in Multimedia tools and applications, vol 81 n° 20 (August 2022)PermalinkGeographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)PermalinkDetection and mapping of snow avalanche debris from Western Himalaya, India using remote sensing satellite images / Kamal Kant Singh in Geocarto international, vol 37 n° 9 ([15/05/2022])PermalinkDeep learning for toponym resolution: Geocoding based on pairs of toponyms / Jacques Fize in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)PermalinkPattern-based identification and mapping of landscape types using multi-thematic data / Jakub Nowosad in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)PermalinkEstimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Turkey / Alkan Günlü in Geocarto international, vol 36 n° 8 ([01/05/2021])PermalinkExtraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data / Xiao-Ming Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)PermalinkLand cover harmonization using Latent Dirichlet Allocation / Zhan Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)PermalinkUnmixing-based Sentinel-2 downscaling for urban land cover mapping / Fei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)Permalink