Descripteur



Etendre la recherche sur niveau(x) vers le bas
Land cover harmonization using Latent Dirichlet Allocation / Zhan Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Land cover harmonization using Latent Dirichlet Allocation Type de document : Article/Communication Auteurs : Zhan Li, Auteur ; Joanne C. White, Auteur ; Michael A. Wulder, Auteur Année de publication : 2021 Article en page(s) : pp 348 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] allocation de Dirichlet latente
[Termes descripteurs IGN] Canada
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] chevauchement
[Termes descripteurs IGN] erreur de classification
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] harmonisation des données
[Termes descripteurs IGN] matrice d'erreur
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Large-area land cover maps are produced to satisfy different information needs. Land cover maps having partial or complete spatial and/or temporal overlap, different legends, and varying accuracies for similar classes, are increasingly common. To address these concerns and combine two 30-m resolution land cover products, we implemented a harmonization procedure using a Latent Dirichlet Allocation (LDA) model. The LDA model used regionalized class co-occurrences from multiple maps to generate a harmonized class label for each pixel by statistically characterizing land attributes from the class co-occurrences. We evaluated multiple harmonization approaches: using the LDA model alone and in combination with more commonly used information sources for harmonization (i.e. error matrices and semantic affinity scores). The results were compared with the benchmark maps generated using simple legend crosswalks and showed that using LDA outputs with error matrices performed better and increased harmonized map overall accuracy by 6–19% for areas of disagreement between the source maps. Our results revealed the importance of error matrices to harmonization, since excluding error matrices reduced overall accuracy by 4–20%. The LDA-based harmonization approach demonstrated in this paper is quantitative, transparent, portable, and efficient at leveraging the strengths of multiple land cover maps over large areas. Numéro de notice : A2021-027 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1796131 date de publication en ligne : 27/07/2020 En ligne : https://doi.org/10.1080/13658816.2020.1796131 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96701
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 348 - 374[article]Unmixing-based Sentinel-2 downscaling for urban land cover mapping / Fei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Unmixing-based Sentinel-2 downscaling for urban land cover mapping Type de document : Article/Communication Auteurs : Fei Xu, Auteur ; Ben Somers, Auteur Année de publication : 2021 Article en page(s) : pp 133 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse des mélanges spectraux
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] Berlin
[Termes descripteurs IGN] Bruxelles
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] Cologne
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] occupation du solRésumé : (auteur) With the launch of Sentinel-2 new opportunities for large scale urban mapping arise. However, the spectral information embedded in the Sentinel-2 20 m spatial resolution bands cannot yet be fully explored in heterogeneous urban landscapes. The 20 m image pixels are often composed of different land covers, resulting in a difficult to interpret mixed pixel spectrum. Here, we propose an unmixing-based image fusion algorithm (UnFuSen2) that self-adapts to the spectral variability of varying land covers and improves the image fusion accuracy by constraining the unmixing equations on the basis of spectral mixing models and the correlation between spectral bands of coarse and fine spatial resolution, respectively. When compared to alternative state-of-the-art downscaling methods UnFuSen2 consistently showed the highest accuracy when applied across test sites in three different European cities (RMSEUnFuSen2 = 203 vs RMSEalternatives = [252, 337]). In a next step, we applied Multiple Endmember Spectral Mixture Analysis (MESMA) on the downscaled Sentinel-2 image cube (i.e. ten 10 m bands) to generate subpixel urban land cover fractions. We compared our MESMA results against the traditional MESMA output as applied on the original Sentinel-2 image cube (i.e. four 10 m bands and six 20 m bands) and tested its robustness against reference data obtained over all three study sites. Results revealed an average decrease in RMSE of respectively 18% and 8% for impervious surface and vegetation fractions when our approach was compared to the traditional MESMA outcomes. Numéro de notice : A2021-015 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.009 date de publication en ligne : 26/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.009 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96419
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 133 - 154[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt How urban places are visited by social groups? Evidence from matrix factorization on mobile phone data / Chaogui Kang in Transactions in GIS, Vol 24 n° 6 (December 2020)
![]()
[article]
Titre : How urban places are visited by social groups? Evidence from matrix factorization on mobile phone data Type de document : Article/Communication Auteurs : Chaogui Kang, Auteur ; Li Shi, Auteur ; Fahui Wang, Auteur ; Yu Liu, Auteur Année de publication : 2020 Article en page(s) : pp 1504 - 1525 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] ethnographie
[Termes descripteurs IGN] factorisation de matrice non-négative
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] production participative
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] site urbain
[Termes descripteurs IGN] téléphonie mobile
[Termes descripteurs IGN] urbanismeRésumé : (Auteur) This research attempts to build a unified framework for distinguishing the spatiotemporal visit patterns of urban places by different social groups using mobile phone data in Harbin, China. Social groups are detected by their social ties in the ego‐to‐ego mobile phone call network and are embedded in physical space according to their home locations. Popular urban places are detected from user‐generated content as the basic spatial analysis unit. Coupling subscribers’ footprints and urban places in physical space, the spatiotemporal visit patterns of urban places by distinct social groups are uncovered and interpreted by non‐negative matrix factorization. The proposed framework enables us to answer several critical questions from three perspectives: (1) How to model popular urban places in terms of vague boundary, land use, and semantic features based on crowdsourcing data?; (2) How to evaluate interaction between individuals for inspecting the relationship between spatial proximity and social ties based on spatiotemporal co‐occurrence?; and (3) How to distinguish urban place visit preferences for social groups associated with different socio‐demographic characteristics? Our research could assist urban planners and municipal managers to identify critical urban places frequented by different population groups according to their roles and social/cultural characteristics for improvement of urban facility allocation. Numéro de notice : A2020-767 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12654 date de publication en ligne : 30/06/2020 En ligne : https://doi.org/10.1111/tgis.12654 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96658
in Transactions in GIS > Vol 24 n° 6 (December 2020) . - pp 1504 - 1525[article]Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method Type de document : Article/Communication Auteurs : Vijendra Singh Bramhe, Auteur ; Sanjay Kumar Ghosh, Auteur ; Pradeep Kumar Garg, Auteur Année de publication : 2020 Article en page(s) : pp 1067 - 1087 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] analyse texturale
[Termes descripteurs IGN] bati
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] texture d'imageRésumé : (auteur) Information of built-up area is essential for various applications, such as sustainable development or urban planning. Built-up area extraction using optical data is challenging due to spectral confusion between built-up and other classes (bare land or river sand, etc.). Here an automated approach has been proposed to generate built-up maps using spectral-textural features and feature selection techniques. Eight Grey-Level Co-Occurrence Matrix based texture features are extracted using Landsat-8 Operational Land Imager bands and combined with multispectral data. The most informative features are selected from combined spectral-textural dataset using feature selection techniques. Further, Support Vector Machine (SVM) classifiers are trained on labelled samples using optimal features and results are compared with Back Propagation-Neural Network (BP-NN) and k-Nearest Neighbour (k-NN). The results show that inclusion of textural features and applying feature selection methods increases the highest overall accuracy of Linear-SVM, RBF-SVM, BP-NN, and k-NN by 9.20%, 9.09%, 8.42%, and 7.39%, respectively. Numéro de notice : A2020-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1566406 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1566406 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95489
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1067 - 1087[article]Extracting impervious surfaces from full polarimetric SAR images in different urban areas / Sara Attarchi in International Journal of Remote Sensing IJRS, vol 41 n°12 (20 - 30 March 2020)
![]()
[article]
Titre : Extracting impervious surfaces from full polarimetric SAR images in different urban areas Type de document : Article/Communication Auteurs : Sara Attarchi, Auteur Année de publication : 2020 Article en page(s) : pp 4644 - 4663 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] extraction de données
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] radar à antenne synthétique
[Termes descripteurs IGN] surface imperméable
[Termes descripteurs IGN] surveillance de l'urbanisation
[Termes descripteurs IGN] texture d'image
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Accurate mapping of impervious surface in urban areas is of great demand in environmental and socio-economic studies since impervious surface growth is recognized as an indicator of urbanization. To demonstrate the potential of full polarimetric Synthetic Aperture Radar (SAR) in impervious surface detection in different urban areas, this study focused on the exploitation of only SAR data. Three cities with different levels of urbanization – Tehran, Kordkuy, and Arak – have been selected to reduce the effect of input data on achieved results. Advanced Land Observing Satellite/Phased Array L-band Synthetic Aperture Radar (ALOS/PALSAR) images have been classified by support vector machine (SVM) with the help of training data from high-resolution satellite images. Quantitative assessment of classification accuracy revealed that Kordkuy, a not fully developed city (i.e. 84.2%) has the lowest accuracy and Arak, a medium urbanized city, has the highest accuracy (i.e. 90.0%). To further explore the efficiency of full polarimetric SAR, grey level co-occurrence matrix (GLCM) texture of polarized bands has been extracted and put into the classification procedure. The texture information of SAR data provided positive contribution to the impervious surface estimation in three study cases. The improvement is especially noted in dark impervious surface class. All three study areas show an increase of about 6–8% in classification accuracy. The results prove that single use of full polarimetric SAR images holds high potential in identifying impervious surfaces in urban areas. The findings are of great importance in frequent urban impervious surface mapping and monitoring especially in cloud-prone area, where the use of optical data as well as the fusion of optic and SAR data are limited. Numéro de notice : A2020-451 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723178 date de publication en ligne : 24/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723178 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95539
in International Journal of Remote Sensing IJRS > vol 41 n°12 (20 - 30 March 2020) . - pp 4644 - 4663[article]Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis / Matheus Pinheiro Ferreira in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
PermalinkEstimating forest canopy cover in black locust (Robinia pseudoacacia L.) plantations on the loess plateau using random forest / Qingxia Zhao in Forests, vol 9 n° 10 (October 2018)
PermalinkRemote sensing of species diversity using Landsat 8 spectral variables / Sabelo Madonsela in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
PermalinkDiscovering non-compliant window co-occurrence patterns / Reem Y. Ali in Geoinformatica [en ligne], vol 21 n° 4 (October - December 2017)
PermalinkThe analysis and measurement of building patterns using texton co-occurrence matrices / Wenhao Yu in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
PermalinkDeep supervised and contractive neural network for SAR image classification / Jie Geng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)
PermalinkAnalyzing relatedness by toponym co-occurrences on web pages / Yu Liu in Transactions in GIS, vol 18 n° 1 (February 2014)
PermalinkInformation content of very high resolution SAR images: study of feature extraction and imaging parameters / Corneliu Dimitru in IEEE Transactions on geoscience and remote sensing, vol 51 n° 8 (August 2013)
PermalinkEstimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions / M. Cutler in ISPRS Journal of photogrammetry and remote sensing, vol 70 (June 2012)
PermalinkClassification of very high spatial resolution imagery based on the fusion of edge and multispectral information / X. Huang in Photogrammetric Engineering & Remote Sensing, PERS, vol 74 n° 12 (December 2008)
Permalink