Descripteur
Documents disponibles dans cette catégorie (613)


Etendre la recherche sur niveau(x) vers le bas
Large-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images / Lingdong Mao in Landscape and Urban Planning, vol 222 (June 2022)
![]()
[article]
Titre : Large-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images Type de document : Article/Communication Auteurs : Lingdong Mao, Auteur ; Zhe Zheng, Auteur ; Xiangfeng Meng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104384 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] détection d'objet
[Termes IGN] grande échelle
[Termes IGN] identification automatique
[Termes IGN] image à haute résolution
[Termes IGN] milieu urbain
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Urban vacant land is a growing issue worldwide. However, most of the existing research on urban vacant land has focused on small-scale city areas, while few studies have focused on large-scale national areas. Large-scale identification of urban vacant land is hindered by the disadvantage of high cost and high variability when using the conventional manual identification method. Criteria inconsistency in cross-domain identification is also a major challenge. To address these problems, we propose a large-scale automatic identification framework of urban vacant land based on semantic segmentation of high-resolution remote sensing images and select 36 major cities in China as study areas. The framework utilizes deep learning techniques to realize automatic identification and introduces the city stratification method to address the challenge of identification criteria inconsistency. The results of the case study on 36 major Chinese cities indicate two major conclusions. First, the proposed framework of vacant land identification can achieve over 90 percent accuracy of the level of professional auditors with much higher result stability and approximately 15 times higher efficiency compared to the manual identification method. Second, the framework has strong robustness and can maintain high performance in various cities. With the above advantages, the proposed framework provides a practical approach to large-scale vacant land identification in various countries and regions worldwide, which is of great significance for the academic development of urban vacant land and future urban development. Numéro de notice : A2022-267 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.landurbplan.2022.104384 Date de publication en ligne : 03/03/2022 En ligne : https://doi.org/10.1016/j.landurbplan.2022.104384 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100275
in Landscape and Urban Planning > vol 222 (June 2022) . - n° 104384[article]Multi-objective optimization of urban environmental system design using machine learning / Peiyuan Li in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Multi-objective optimization of urban environmental system design using machine learning Type de document : Article/Communication Auteurs : Peiyuan Li, Auteur ; Tianfang Xu, Auteur ; Shiqi Wei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101796 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme génétique
[Termes IGN] apprentissage automatique
[Termes IGN] dioxyde de carbone
[Termes IGN] ilot thermique urbain
[Termes IGN] indicateur environnemental
[Termes IGN] milieu urbain
[Termes IGN] optimisation (mathématiques)
[Termes IGN] planification urbaine
[Termes IGN] processus gaussien
[Termes IGN] régression
[Termes IGN] végétationRésumé : (auteur) The efficacy of urban mitigation strategies for heat and carbon emissions relies heavily on local urban characteristics. The continuous development and improvement of urban land surface models enable rather accurate assessment of the environmental impact on urban development strategies, whereas physically-based simulations remain computationally costly and time consuming, as a consequence of the increasing complexity of urban system dynamics. Hence it is imperative to develop fast, efficient, and economic operational toolkits for urban planners to foster the design, implementation, and evaluation of urban mitigation strategies, while retaining the accuracy and robustness of physical models. In this study, we adopt a machine learning (ML) algorithm, viz. Gaussian Process Regression, to emulate the physics of heat and biogenic carbon exchange in the built environment. The ML surrogate is trained and validated on the simulation results generated by a state-of-the-art single-layer urban canopy model over a wide range of urban characteristics, showing high accuracy in capturing heat and carbon dynamics. Using the validated surrogate model, we then conduct multi-objective optimization using the genetic algorithm to optimize urban design scenarios for desirable urban mitigation effects. While the use of urban greenery is found effective in mitigating both urban heat and carbon emissions, there is manifest trade-offs among ameliorating diverse urban environmental indicators. Numéro de notice : A2022-244 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101796 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101796 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100184
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101796[article]The promising combination of a remote sensing approach and landscape connectivity modelling at a fine scale in urban planning / Elie Morin in Ecological indicators, vol 139 (June 2022)
![]()
[article]
Titre : The promising combination of a remote sensing approach and landscape connectivity modelling at a fine scale in urban planning Type de document : Article/Communication Auteurs : Elie Morin, Auteur ; Pierre-Alexis Herrault, Auteur ; Yvonnick Guinard, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108930 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse du paysage
[Termes IGN] BD Topo
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte de la végétation
[Termes IGN] Chatellerault
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] connexité (topologie)
[Termes IGN] corridor biologique
[Termes IGN] extraction de la végétation
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] indicateur environnemental
[Termes IGN] milieu urbain
[Termes IGN] Niort
[Termes IGN] planification urbaine
[Termes IGN] Poitiers
[Termes IGN] segmentation d'imageRésumé : (auteur) Urban landscapes are rapid changing ecosystems with diverse urban forms that impede the movement of organisms. Therefore, designing and modelling ecological networks to identify biodiversity reservoirs and their corridors are crucial aspects of land management in terms of population persistence and survival. However, the land cover/use maps used for landscape connectivity modelling can lack information in such a highly complex environment. In this context, remote sensing approaches are gaining interest for the development of accurate land cover/use maps. We tested the efficiency of an object-based classification using open-source projects and free images to identify vegetation strata at a very fine scale and evaluated its contribution to landscape connectivity modelling. We compared different spatial and thematic resolutions from existing databases and object-based image analyses in three French cities. Our results suggested that this remote sensing approach produced reliable land cover maps to differentiate artificial areas, tree vegetation and herbaceous vegetation. Land cover maps enhanced with the remote sensing products substantially changed the structural connectivity indices, showing an improvement up to four times the proportion of herbaceous and tree vegetation. In addition, functional connectivity indices evaluated for several forest species were mainly impacted for medium dispersers in quantitative (metrics) and qualitative (corridors) estimations. Thus, the combination of this reproductible remote sensing approach and landscape connectivity modelling at a very fine scale provides new insights into the characterisation of ecological networks for conservation planning. Numéro de notice : A2022-368 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.ecolind.2022.108930 Date de publication en ligne : 04/05/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.108930 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100592
in Ecological indicators > vol 139 (June 2022) . - n° 108930[article]Urban land cover/use mapping and change detection analysis using multi-temporal Landsat OLI with Lidar-DEM and derived TPI / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 4 (April 2022)
![]()
[article]
Titre : Urban land cover/use mapping and change detection analysis using multi-temporal Landsat OLI with Lidar-DEM and derived TPI Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Sam Dennis, Auteur Année de publication : 2022 Article en page(s) : pp 243 - 253 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection de changement
[Termes IGN] données multitemporelles
[Termes IGN] données topographiques
[Termes IGN] image Landsat-OLI
[Termes IGN] milieu urbain
[Termes IGN] MNS lidar
[Termes IGN] Tennessee (Etats-Unis)
[Termes IGN] utilisation du solRésumé : (auteur) The mapping and change detection of land cover and land use are essential for urban management. The aim of this study was to map and monitor the spatial and temporal change in urban land cover and land use in Davidson County, Tennessee in the periods of 2013, 2016, and 2020. The urban land cover and land use categories were classified and mapped using Random Forest algorithm. A combination of Landsat Operational Land Imager (OLI) satellite data with Light Detection and Ranging (lidar)-Digital Elevation Model (DEM) and derived Topographic Position Index (TPI) were used in the classification and monitoring of urban land cover and land use change. The urban land cover and land use types were mapped with average overall accuracies of about 87% in 2020, 85% in 2016 and 2013. The overall accuracy increased by around 8%, 9%, and 6% in 2020, 2016, and 2013 classifications respectively when lidarDEMand derived TPIwere added to Landsat OLIsatellite data in the classification relative to standalone Landsat OLI. Total change occurred in about 63% of Davidson County between 2016 and 2020 with significant net gains and losses among land cover and land use types. This information could support land use planning. Numéro de notice : A2022-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00042R3 Date de publication en ligne : 04/04/2022 En ligne : https://doi.org/10.14358/PERS.21-00042R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100320
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 4 (April 2022) . - pp 243 - 253[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022041 SL Revue Centre de documentation Revues en salle Disponible Exploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China / Zhen Li in Sustainable Cities and Society, vol 78 (March 2022)
![]()
[article]
Titre : Exploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China Type de document : Article/Communication Auteurs : Zhen Li, Auteur ; Dan Hu, Auteur Année de publication : 2022 Article en page(s) : n° 103392 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Bâti-3D
[Termes IGN] classification et arbre de régression
[Termes IGN] corrélation
[Termes IGN] données localisées 2D
[Termes IGN] hauteur du bâti
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-OLI
[Termes IGN] milieu urbain
[Termes IGN] morphologie urbaine
[Termes IGN] Pékin (Chine)
[Termes IGN] saison
[Termes IGN] température au solRésumé : (auteur) With rapid urbanization, urban three-dimensional morphology and its ecological effects have received more attention. However, thorough investigations into the multiple scale impact of the 2D/3D architectural morphology on urban land surface temperature (LST) remain limited. Taking Beijing as a case study area, we quantified the contributions of the 2D/3D architectural morphology indicators and revealed their marginal effects on multiple scales using the boosted regression trees (BRT) method. The results showed that (1) the building coverage ratio and building height were the most significant factors influencing the LST across all spatial scales and seasons, (2) the 3D shape index, 3D fractal, and 3D adjacency were found to be influential factors, with sum contributions varying from 6.0% to 37.7%, and (3) in summer, the 3D shape index showed a stepwise negative correlation with the LST. The 3D fractal and 3D adjacency exhibited both positive and negative correlations with the LST. When the spatial scale was 240 m, the regulation amplitudes for the 3D shape index, 3D fractal, and 3D adjacency were 2.0°C, 1.0°C and 1.0°C, respectively. These findings provide quantitative insights that can be used to improve urban thermal environments and achieve sustainable urban development by adjusting architectural morphology. Numéro de notice : A2022-242 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2021.103392 Date de publication en ligne : 28/12/2021 En ligne : https://doi.org/10.1016/j.scs.2021.103392 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100169
in Sustainable Cities and Society > vol 78 (March 2022) . - n° 103392[article]Using street view images to identify road noise barriers with ensemble classification model and geospatial analysis / Kai Zhang in Sustainable Cities and Society, vol 78 (March 2022)
PermalinkA method of vision aided GNSS positioning using semantic information in complex urban environment / Rui Zhai in Remote sensing, vol 14 n° 4 (February-2 2022)
PermalinkMapping abundance distributions of allergenic tree species in urbanized landscapes: A nation-wide study for Belgium using forest inventory and citizen science data / Sébastien Dujardin in Landscape and Urban Planning, vol 218 (February 2022)
PermalinkRepresenting vector geographic information as a tensor for deep learning based map generalisation / Azelle Courtial (2022)
PermalinkPermalinkApplication of a hand-held LiDAR scanner for the urban cadastral detail survey in digitized cadastral area of Taiwan urban city / Shih-Hong Chio in Remote sensing, vol 13 n° 24 (December-2 2021)
PermalinkReview of spectral indices for urban remote sensing / Akib Javed in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 7 (July 2021)
PermalinkMulti-GNSS PPP/INS tightly coupled integration with atmospheric augmentation and its application in urban vehicle navigation / Shengfeng Gu in Journal of geodesy, vol 95 n° 6 (June 2021)
PermalinkA novel class-specific object-based method for urban change detection using high-resolution remote sensing imagery / Ting Bai in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)
PermalinkParsing of urban facades from 3D point clouds based on a novel multi-view domain / Wei Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)
Permalink