Descripteur


Etendre la recherche sur niveau(x) vers le bas
Modelling the effect of landmarks on pedestrian dynamics in urban environments / Gabriele Filomena in Computers, Environment and Urban Systems, vol 86 (March 2021)
![]()
[article]
Titre : Modelling the effect of landmarks on pedestrian dynamics in urban environments Type de document : Article/Communication Auteurs : Gabriele Filomena, Auteur ; Judith A. Verstegen, Auteur Année de publication : 2021 Article en page(s) : n° 101573 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] carte cognitive
[Termes descripteurs IGN] itinéraire piétionnier
[Termes descripteurs IGN] Londres
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle orienté agent
[Termes descripteurs IGN] navigation pédestre
[Termes descripteurs IGN] point de repèreRésumé : (auteur) Landmarks have been identified as relevant and prominent urban elements, explicitly involved in human navigation processes. Despite the understanding accumulated around their functions, landmarks have not been included in simulation models of pedestrian movement in urban environments. In this paper, we describe an Agent-Based Model (ABM) for pedestrian movement simulation that incorporates the role of on-route and distant landmarks in agents' route choice behaviour. Route choice models with and without landmarks were compared by using four scenarios: road distance minimisation, least cumulative angular change, road distance minimisation and landmarks, least cumulative angular change and landmarks. The city centre of London was used as a case study and a set of GPS trajectories was employed to evaluate the model. The introduction of landmarks led to more heterogeneous patterns that diverge from the minimisation models. Landmark-based navigation brought about high pedestrian volumes along the river (up to 13% of agents) and the boundaries of the parks (around 8% of the agents). Moreover, the model evaluation showed that the results of the landmark-based scenarios were not significantly different from the GPS trajectories in terms of cumulative landmarkness, whereas the other scenarios were. This implies that our proposed landmark-based route choice approach was better able to reproduce human navigation. At the street-segment level, the pedestrian volumes emerging from the scenarios were comparable to the trajectories' volumes in most of the case study area; yet, under- and over-estimation were observed along the banks of the rivers and across green areas (up to +7%, −11% of volumes) in the landmark-based scenarios, and along major roads (up to +11% of volumes) in the least cumulative angular change scenario. While our model could be expanded in relation to the agents' cognitive representation of the environment, e.g. by considering other relevant urban elements and accounting for individual spatial knowledge differences, the inclusion of landmarks in route choice models results in more plausible agents that make use of relevant urban information. Numéro de notice : A2021-118 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.compenvurbsys.2020.101573 date de publication en ligne : 13/01/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101573 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96943
in Computers, Environment and Urban Systems > vol 86 (March 2021) . - n° 101573[article]Fully convolutional neural network for impervious surface segmentation in mixed urban environment / Joseph McGlinchy in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
![]()
[article]
Titre : Fully convolutional neural network for impervious surface segmentation in mixed urban environment Type de document : Article/Communication Auteurs : Joseph McGlinchy, Auteur ; Brian Muller, Auteur ; Brian Johnson, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 117 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] Denver
[Termes descripteurs IGN] exactitude des données
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] surface imperméableRésumé : (Auteur) The urgency of creating appropriate, high-resolution data products such as impervious cover information has increased as cities face rapid growth as well as climate change and other environmental challenges. This work explores the use of fully convolutional neural networks (FCNNs )—specifically UNet with a ResNet-152 encoder—in mapping impervious surfaces at the pixel level from WorldView-2 in a mixed urban/residential environment. We investigate three-, four-, and eight-band multispectral inputs to the FCNN. Resulting maps are promising in both qualitative and quantitative assessment when compared to automated land use/land cover products. Accuracy was assessed by F1 and average precision (AP) scores, as well as receiver operating characteristic curves, with area under the curve (AUC ) used as an additional accuracy metric. The four-band model shows the highest average test-set accuracies (F1, AP, and AUC of 0.709, 0.82, and 0.807, respectively), with higher AP and AUC than the automated land use/land cover products, indicating the utility of the blue-green-red-infrared channels for the FCNN. Improved performance was seen in residential areas, with worse performance in more densely developed areas. Numéro de notice : A2021-099 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.2.117 date de publication en ligne : 01/02/2021 En ligne : https://doi.org/10.14358/PERS.87.2.117 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97045
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 2 (February 2021) . - pp 117 - 123[article]Improving trajectory estimation using 3D city models and kinematic point clouds / Lucas Lucks in Transactions in GIS, Vol 25 n° 1 (February 2021)
![]()
[article]
Titre : Improving trajectory estimation using 3D city models and kinematic point clouds Type de document : Article/Communication Auteurs : Lucas Lucks, Auteur ; Lasse Klingbeil, Auteur ; Lutz Plümer, Auteur ; Youness Dehbi, Auteur Année de publication : 2021 Article en page(s) : pp 238 - 260 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] balayage laser
[Termes descripteurs IGN] bruit (théorie du signal)
[Termes descripteurs IGN] centrale inertielle
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] interpolation
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] modèle 3D de l'espace urbain
[Termes descripteurs IGN] modèle sémantique de données
[Termes descripteurs IGN] navigation autonome
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] système de numérisation mobileRésumé : (Auteur) Accurate and robust positioning of vehicles in urban environments is of high importance for autonomous driving or mobile mapping. In mobile mapping systems, a simultaneous mapping of the environment using laser scanning and an accurate positioning using global navigation satellite systems are targeted. This requirement is often not guaranteed in shadowed cities where global navigation satellite system signals are usually disturbed, weak or even unavailable. We propose a novel approach which incorporates prior knowledge (i.e., a 3D city model of the environment) and improves the trajectory. The recorded point cloud is matched with the semantic city model using a point‐to‐plane iterative closest point method. A pre‐classification step enables an informed sampling of appropriate matching points. Random forest is used as classifier to discriminate between facade and remaining points. Local inconsistencies are tackled by a segmentwise partitioning of the point cloud where an interpolation guarantees a seamless transition between the segments. The general applicability of the method implemented is demonstrated on an inner‐city data set recorded with a mobile mapping system. Numéro de notice : A2021-188 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12719 date de publication en ligne : 02/01/2021 En ligne : https://doi.org/10.1111/tgis.12719 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97157
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 238 - 260[article]A novel intelligent classification method for urban green space based on high-resolution remote sensing images / Zhiyu Xu in Remote sensing, vol 12 n° 22 (December 2020)
![]()
[article]
Titre : A novel intelligent classification method for urban green space based on high-resolution remote sensing images Type de document : Article/Communication Auteurs : Zhiyu Xu, Auteur ; Yi Zhou, Auteur ; Shixin Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 3845 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre urbain
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] espace vert
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Pékin (Chine)
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] urbanismeRésumé : (auteur) The real-time, accurate, and refined monitoring of urban green space status information is of great significance in the construction of urban ecological environment and the improvement of urban ecological benefits. The high-resolution technology can provide abundant information of ground objects, which makes the information of urban green surface more complicated. The existing classification methods are challenging to meet the classification accuracy and automation requirements of high-resolution images. This paper proposed a deep learning classification method for urban green space based on phenological features constraints in order to make full use of the spectral and spatial information of green space provided by high-resolution remote sensing images (GaoFen-2) in different periods. The vegetation phenological features were added as auxiliary bands to the deep learning network for training and classification. We used the HRNet (High-Resolution Network) as our model and introduced the Focal Tversky Loss function to solve the sample imbalance problem. The experimental results show that the introduction of phenological features into HRNet model training can effectively improve urban green space classification accuracy by solving the problem of misclassification of evergreen and deciduous trees. The improvement rate of F1-Score of deciduous trees, evergreen trees, and grassland were 0.48%, 4.77%, and 3.93%, respectively, which proved that the combination of vegetation phenology and high-resolution remote sensing image can improve the results of deep learning urban green space classification. Numéro de notice : A2020-792 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223845 date de publication en ligne : 23/11/2020 En ligne : https://doi.org/10.3390/rs12223845 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96565
in Remote sensing > vol 12 n° 22 (December 2020) . - n° 3845[article]A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications / T. Chakraborty in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
![]()
[article]
Titre : A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications Type de document : Article/Communication Auteurs : T. Chakraborty, Auteur ; A. Hsu, Auteur ; D. Manya, Auteur ; G. Sheriff, Auteur Année de publication : 2020 Article en page(s) : pp 74 - 88 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse socio-économique
[Termes descripteurs IGN] base de données localisées
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] ilot thermique urbain
[Termes descripteurs IGN] image Terra-MODIS
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] variation saisonnièreRésumé : (auteur) The urban heat island (UHI) effect is strongly modulated by urban-scale changes to the aerodynamic, thermal, and radiative properties of the Earth’s land surfaces. Interest in this phenomenon, both from the climatological and public health perspectives, has led to hundreds of UHI studies, mostly conducted on a city-by-city basis. These studies, however, do not provide a complete picture of the UHI for administrative units using a consistent methodology. To address this gap, we characterize clear-sky surface UHI (SUHI) intensities for all urbanized areas in the United States using a modified Simplified Urban-Extent (SUE) approach by combining a fusion of remotely-sensed data products with multiple US census-defined administrative urban delineations. We find the highest daytime SUHI intensities during summer (1.91 ± 0.97 °C) for 418 of the 497 urbanized areas, while the winter daytime SUHI intensity (0.87 ± 0.45 °C) is the lowest in 439 cases. Since urban vegetation has been frequently cited as an effective way to mitigate UHI, we use NDVI, a satellite-derived proxy for live green vegetation, and US census tract delineations to characterize how vegetation density modulates inter-urban, intra-urban, and inter-seasonal variability in SUHI intensity. In addition, we also explore how elevation and distance from the coast confound SUHI estimates. To further quantify the uncertainties in our estimates, we analyze and discuss some limitations of these satellite-derived products across climate zones, particularly issues with using remotely sensed radiometric temperature and vegetation indices as proxies for urban heat and vegetation cover. We demonstrate an application of this spatially explicit dataset, showing that for the majority of the urbanized areas, SUHI intensity is lower in census tracts with higher median income and higher proportion of white people. Our analysis also suggests that poor and non-white urban residents may suffer the possible adverse effects of summer SUHI without reaping the potential benefits (e.g., warmer temperatures) during winter, though establishing this result requires future research using more comprehensive heat stress metrics. This study develops new methodological advancements to characterize SUHI and its intra-urban variability at levels of aggregation consistent with sources of other socioeconomic information, which can be relevant in future inter-disciplinary research and as a possible screening tool for policy-making. The dataset developed in this study is visualized at: https://datadrivenlab.users.earthengine.app/view/usuhiapp. Numéro de notice : A2020-635 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.07.021 date de publication en ligne : 13/08/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.07.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96058
in ISPRS Journal of photogrammetry and remote sensing > vol 168 (October 2020) . - pp 74 - 88[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020101 SL Revue Centre de documentation Revues en salle Disponible 081-2020103 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Leveraging photogrammetric mesh models for aerial-ground feature point matching toward integrated 3D reconstruction / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkSimulating urban land use change by integrating a convolutional neural network with vector-based cellular automata / Yaqian Zhai in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
PermalinkA global analysis of cities’ geosocial temporal signatures for points of interest hours of operation / Kevin Sparks in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
PermalinkHierarchical classification of pole‐like objects in mobile laser scanning point clouds / Rufei Liu in Photogrammetric record, vol 35 n° 169 (March 2020)
PermalinkThe improvement in integer ambiguity resolution with INS aiding for kinematic precise point positioning / Xiaohong Zhang in Journal of geodesy, vol 93 n°7 (July 2019)
PermalinkMultilane roads extracted from the OpenStreetMap urban road network using random forests / Yongyang Xu in Transactions in GIS, vol 23 n° 2 (April 2019)
PermalinkLand cover classification in combined elevation and optical images supported by OSM data, mixed-level features, and non-local optimization algorithms / Dimitri Bulatov in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)
PermalinkPoint clouds for direct pedestrian pathfinding in urban environments / Jesus Balado in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
PermalinkTowards visual urban scene understanding for autonomous vehicle path tracking using GPS positioning data. / Citlalli Gamez serna (2019)
PermalinkUse of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: Methodology, validation, and analysis / Liang Cheng in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
Permalink