Descripteur
Documents disponibles dans cette catégorie (26)



Etendre la recherche sur niveau(x) vers le bas
Uncertainty estimation for stereo matching based on evidential deep learning / Chen Wang in Pattern recognition, vol 124 (April 2022)
![]()
[article]
Titre : Uncertainty estimation for stereo matching based on evidential deep learning Type de document : Article/Communication Auteurs : Chen Wang, Auteur ; Xiang Wang, Auteur ; Jiawei Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108498 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] distribution de Gauss
[Termes IGN] fonction de perte
[Termes IGN] lissage de données
[Termes IGN] modèle d'incertitude
[Termes IGN] reconstruction d'imageRésumé : (auteur) Although deep learning-based stereo matching approaches have achieved excellent performance in recent years, it is still a non-trivial task to estimate the uncertainty of the produced disparity map. In this paper, we propose a novel approach to estimate both aleatoric and epistemic uncertainties for stereo matching in an end-to-end way. We introduce an evidential distribution, named Normal Inverse-Gamma (NIG) distribution, whose parameters can be used to calculate the uncertainty. Instead of directly regressed from aggregated features, the uncertainty parameters are predicted for each potential disparity and then averaged via the guidance of matching probability distribution. Furthermore, considering the sparsity of ground truth in real scene datasets, we design two additional losses. The first one tries to enlarge uncertainty on incorrect predictions, so uncertainty becomes more sensitive to erroneous regions. The second one enforces the smoothness of the uncertainty in the regions with smooth disparity. Most stereo matching models, such as PSM-Net, GA-Net, and AA-Net, can be easily integrated with our approach. Experiments on multiple benchmark datasets show that our method improves stereo matching results. We prove that both aleatoric and epistemic uncertainties are well-calibrated with incorrect predictions. Particularly, our method can capture increased epistemic uncertainty on out-of-distribution data, making it effective to prevent a system from potential fatal consequences. Code is available at https://github.com/Dawnstar8411/StereoMatching-Uncertainty. Numéro de notice : A2022-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.patcog.2021.108498 Date de publication en ligne : 23/12/2021 En ligne : https://doi.org/10.1016/j.patcog.2021.108498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99992
in Pattern recognition > vol 124 (April 2022) . - n° 108498[article]Un état de l’art sur l’imprécision spatiale et sa modélisation / Mattia Bunel in Cybergeo, European journal of geography, n° 2021 ([01/02/2021])
![]()
[article]
Titre : Un état de l’art sur l’imprécision spatiale et sa modélisation Titre original : A Review of Spatial Imprecision Modelisation Methods Type de document : Article/Communication Auteurs : Mattia Bunel , Auteur
Année de publication : 2021 Projets : 1-Pas de projet / Article en page(s) : n° 966 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] données localisées
[Termes IGN] imprécision géométrique
[Termes IGN] incertitude géométrique
[Termes IGN] modèle conceptuel de données localisées
[Termes IGN] modèle d'incertitude
[Termes IGN] sous ensemble flouRésumé : (auteur) L’objectif de cet article est de présenter et définir la notion d’imprécision spatiale, terme qualifiant toutes les situations où un objet spatial, quelle que soit sa nature, voit ses limites difficilement identifiables. Nous présentons cette notion ainsi que les concepts qui y sont apparentés, en prenant soin de clarifier un vocabulaire confus et des définitions contradictoires. Cet article recense également les différentes théories et leurs implémentations, permettant de modéliser l’imprécision spatiale. L’ensemble de ce programme s’appuiera sur un exemple filé, permettant d’expliciter concepts et modélisations. Numéro de notice : A2021-175 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.4000/cybergeo.36126 Date de publication en ligne : 11/02/2021 En ligne : https://doi.org/10.4000/cybergeo.36126 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97225
in Cybergeo, European journal of geography > n° 2021 [01/02/2021] . - n° 966[article]Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis Type de document : Article/Communication Auteurs : Max Mehltretter, Auteur ; Christian Heipke, Auteur Année de publication : 2021 Article en page(s) : pp 63 - 75 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corrélation épipolaire dense
[Termes IGN] couple stéréoscopique
[Termes IGN] courbe épipolaire
[Termes IGN] disparité
[Termes IGN] effet de profondeur cinétique
[Termes IGN] image RVB
[Termes IGN] modèle d'incertitude
[Termes IGN] modèle stochastique
[Termes IGN] voxelRésumé : (auteur) Motivated by the need to identify erroneous disparity estimates, various methods for the estimation of aleatoric uncertainty in the context of dense stereo matching have been presented in recent years. Especially, the introduction of deep learning based methods and the accompanying significant improvement in accuracy have greatly increased the popularity of this field. Despite this remarkable development, most of these methods rely on features learned from disparity maps only, neglecting the corresponding 3-dimensional cost volumes. However, conventional hand-crafted methods have already demonstrated that the additional information contained in such cost volumes are beneficial for the task of uncertainty estimation. In this paper, we combine the advantages of deep learning and cost volume based features and present a new Convolutional Neural Network (CNN) architecture to directly learn features for the task of aleatoric uncertainty estimation from volumetric 3D data. Furthermore, we discuss and apply three different uncertainty models to train our CNN without the need to provide ground truth for uncertainty. In an extensive evaluation on three datasets using three common dense stereo matching methods, we investigate the effects of these uncertainty models and demonstrate the generality and state-of-the-art accuracy of the proposed method. Numéro de notice : A2021-012 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.003 Date de publication en ligne : 18/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96415
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 63 - 75[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective / Edgar Santos-Fernandez in Journal of the Royal Statistical Society: Series C Applied Statistics, vol 70 n° 1 (January 2021)
![]()
[article]
Titre : Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective Type de document : Article/Communication Auteurs : Edgar Santos-Fernandez, Auteur ; Erin E. Peterson, Auteur ; Julie Vercelloni, Auteur ; Em Rushworth, Auteur ; Kerrie Mengersen, Auteur Année de publication : 2021 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification bayesienne
[Termes IGN] données écologiques
[Termes IGN] estimation bayesienne
[Termes IGN] modèle d'incertitude
[Termes IGN] récif corallien
[Termes IGN] science citoyenneRésumé : (auteur) Many research domains use data elicited from ‘citizen scientists’ when a direct measure of a process is expensive or infeasible. However, participants may report incorrect estimates or classifications due to their lack of skill. We demonstrate how Bayesian hierarchical models can be used to learn about latent variables of interest, while accounting for the participants’ abilities. The model is described in the context of an ecological application that involves crowdsourced classifications of georeferenced coral-reef images from the Great Barrier Reef, Australia. The latent variable of interest is the proportion of coral cover, which is a common indicator of coral reef health. The participants’ abilities are expressed in terms of sensitivity and specificity of a correctly classified set of points on the images. The model also incorporates a spatial component, which allows prediction of the latent variable in locations that have not been surveyed. We show that the model outperforms traditional weighted-regression approaches used to account for uncertainty in citizen science data. Our approach produces more accurate regression coefficients and provides a better characterisation of the latent process of interest. This new method is implemented in the probabilistic programming language Stan and can be applied to a wide number of problems that rely on uncertain citizen science data. Numéro de notice : A2021-509 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE/MATHEMATIQUE Nature : Article DOI : 10.1111/rssc.12453 Date de publication en ligne : 11/11/2020 En ligne : https://doi.org/10.1111/rssc.12453 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102439
in Journal of the Royal Statistical Society: Series C Applied Statistics > vol 70 n° 1 (January 2021)[article]Evaluation of a neural network with uncertainty for detection of ice and water in SAR imagery / Nazanin Asadi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Evaluation of a neural network with uncertainty for detection of ice and water in SAR imagery Type de document : Article/Communication Auteurs : Nazanin Asadi, Auteur ; K. Andrea Scott, Auteur ; Alexander S. Komarov, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 247 - 259 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] assimilation des données
[Termes IGN] classification pixellaire
[Termes IGN] glace de mer
[Termes IGN] image radar moirée
[Termes IGN] incertitude des données
[Termes IGN] modèle d'incertitude
[Termes IGN] Perceptron multicouche
[Termes IGN] pondération
[Termes IGN] précision de la classification
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Synthetic aperture radar (SAR) sea ice imagery is a promising source of data for sea ice data assimilation. Classification of SAR sea ice imagery into ice and water is of particular relevance due to its relationship with ice concentration, a key variable in sea ice data assimilation systems. With increasing volumes of SAR data, automated methods to carry out these classifications are of particular importance. Although several automated approaches have been proposed, none look at the impact of including an estimate of uncertainty of the model parameters and input features on the classification output. This article uses an established database of SAR image features to train a multilayer perceptron (MLP) neural network to classify pixel locations as either ice, water, or unknown. The classification accuracies are benchmarked using a recently developed logistic regression approach for the same database. The two methods are found to be comparable. The MLP approach is then enhanced to allow uncertainty to be estimated at each pixel location. Following methods proposed in the deep learning community, two kinds of uncertainty are considered. The first, epistemic uncertainty, is that due to uncertainty in the MLP weights. The second kind of uncertainty, aleatoric uncertainty, is that which cannot be explained by the model, and is therefore associated with the input data. It is found that including these uncertainties in the MLP models reduces their accuracies slightly, but also reduces misclassification rates. This is of particular importance for data assimilation applications, where misclassifications could severely degrade the analysis. Numéro de notice : A2021-033 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992454 Date de publication en ligne : 09/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992454 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96735
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 247 - 259[article]A low-cost integrated MEMS-based INS/GPS vehicle navigation system with challenging conditions based on an optimized IT2FNN in occluded environments / Elahe S. Abdolkarimi in GPS solutions, Vol 24 n° 4 (October 2020)
PermalinkMapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors / Svetlana Saarela in Forest ecosystems, vol 7 (2020)
PermalinkTotal Vertical Uncertainty (TVU) modeling for topo-bathymetric LIDAR systems / Firat Eren in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 8 (August 2019)
PermalinkQuantifying the sources of epistemic uncertainty in model predictions of insect disturbances in an uncertain climate / David R. Gray in Annals of Forest Science, vol 74 n° 3 (September 2017)
PermalinkHERA: A dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios / Jeanne M. Jones in Computers & geosciences, vol 109 (December 2017)
PermalinkSatellite-based probabilistic assessment of soil moisture using C-band quad-polarized RISAT1 data / Manali Pal in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
PermalinkPermalinkThe 1st International workshop on the quality of geodetic observation and monitoring systems (QuGOMS'11) / Hansjörg Kutterer (2015)
PermalinkA random set approach for modeling integrated uncertainties of traffic islands derived from airborne laser scanning points / Liang Zhou in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 9 (September 2013)
PermalinkGeoreferencing locality descriptions and computing associated uncertainty using a probabilistic approach / Q. Guo in International journal of geographical information science IJGIS, vol 22 n° 10 (october 2008)
Permalink