Descripteur
Documents disponibles dans cette catégorie (35)



Etendre la recherche sur niveau(x) vers le bas
Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model / Hasan Aksoy in Geocarto international, vol 37 n° 4 ([15/02/2022])
![]()
[article]
Titre : Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model Type de document : Article/Communication Auteurs : Hasan Aksoy, Auteur ; Sinan Kaptan, Auteur Année de publication : 2022 Article en page(s) : pp 1183 - 1202 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] automate cellulaire
[Termes IGN] classification dirigée
[Termes IGN] détection de changement
[Termes IGN] gestion forestière
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] modèle de Markov
[Termes IGN] occupation du sol
[Termes IGN] surface cultivée
[Termes IGN] surface forestière
[Termes IGN] Turquie
[Termes IGN] utilisation du solRésumé : (auteur) This study aimed to simulate and assess forest cover and land use/land cover (LULC) changes between 2019 and 2039 using the cellular automata-Markov model. The performance of the model was evaluated by comparing the 2019 simulation map with the 2019 supervised classified map, and it was found to be reliable, with a similarity rate of 85.43%. The LULC analysis and estimates were carried out for a total of six classes: coniferous, broad-leaf, mixed forest, settlement, water and agriculture. Between 1999 and 2019, the areas of total forest increased by 17.4%, settlement by 84.6% and water by 20.1%, whereas the agriculture area decreased by 33.2%. According to 2019‒2039 land use/cover simulation results, there were decreases of 2.4% in total forest area and 3.7% in residential and water surface areas, but a 6.9% decrease in the agriculture class. Tracking these changes will contribute to decision making and strategy development efforts of forest planners and managers. Numéro de notice : A2022-397 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1778102 Date de publication en ligne : 22/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1778102 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100691
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 1183 - 1202[article]Assessment and prediction of urban growth for a mega-city using CA-Markov model / Veerendra Yadav in Geocarto international, vol 36 n° 17 ([15/09/2021])
![]()
[article]
Titre : Assessment and prediction of urban growth for a mega-city using CA-Markov model Type de document : Article/Communication Auteurs : Veerendra Yadav, Auteur ; Sanjay Kumar Ghosh, Auteur Année de publication : 2021 Article en page(s) : pp 1960 - 1992 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] coefficient de corrélation
[Termes IGN] croissance urbaine
[Termes IGN] mégalopole
[Termes IGN] modèle de Markov
[Termes IGN] modèle de simulation
[Termes IGN] OpenStreetMap
[Termes IGN] Tamil Nadu (Inde ; état)
[Termes IGN] urbanisationRésumé : (auteur) Most of World’s mega-cities are facing high population growth. To accommodate the increased population, new built-up areas are emerging at the periphery or fringe area of cities. New urbanisation has an adverse impact on the existing Land Use Land Cover (LULC). To monitor and analyse the impact of urbanisation, LULC change analysis has become the primary concern for LULC monitoring agencies. In this study, LULC change of Chennai has been assessed during 1981–2011 using temporal Landsat data. All the dataset has been classified using Maximum Likelihood Classifier (MLC). Quantitative change in LULC has been carried out using Pearson’s Correlation Coefficient, Transition Potential Matrix, Land Use Dynamic Degree and MLC. Further, spatio-temporal change analysis has been performed using Post-classification comparison technique. Cellular Automata-Markov (CA-Markov) Model used for LULC prediction for 2021–2051. The urban area of Chennai has increased from 40.74 to 103.52 km2 during 1981–2011. Further, LULC prediction using the CA-Markov model shows that the urban area of Chennai district may increase from 103.52 to 140.79 km2 during 2011–2051. During the period 1981–2051, the prediction model indicates that mostly vegetation and barren land will be converted into urban land class. Numéro de notice : A2021-692 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2019.1690054 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1080/10106049.2019.1690054 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98507
in Geocarto international > vol 36 n° 17 [15/09/2021] . - pp 1960 - 1992[article]Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
![]()
[article]
Titre : Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh Type de document : Article/Communication Auteurs : Mohammad Emran Hasan, Auteur ; Biswajit Nath, Auteur ; A.H.M. Raihan Sarker, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] automate cellulaire
[Termes IGN] Bangladesh
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] dégradation de l'environnement
[Termes IGN] détection de changement
[Termes IGN] gestion forestière durable
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] mangrove
[Termes IGN] modèle de Markov
[Termes IGN] modèle de simulation
[Termes IGN] occupation du sol
[Termes IGN] réserve forestière
[Termes IGN] réserve naturelle
[Termes IGN] santé des forêts
[Termes IGN] série temporelle
[Termes IGN] système d'information géographiqueRésumé : (auteur) Overdependence on and exploitation of forest resources have significantly transformed the natural reserve forest of Sundarban, which shares the largest mangrove territory in the world, into a great degradation status. By observing these, a most pressing concern is how much degradation occurred in the past, and what will be the scenarios in the future if they continue? To confirm the degradation status in the past decades and reveal the future trend, we took Sundarban Reserve Forest (SRF) as an example, and used satellite Earth observation historical Landsat imagery between 1989 and 2019 as existing data and primary data. Moreover, a geographic information system model was considered to estimate land cover (LC) change and spatial health quality of the SRF from 1989 to 2029 based on the large and small tree categories. The maximum likelihood classifier (MLC) technique was employed to classify the historical images with five different LC types, which were further considered for future projection (2029) including trends based on 2019 simulation results from 1989 and 2019 LC maps using the Markov-cellular automata model. The overall accuracy achieved was 82.30%~90.49% with a kappa value of 0.75~0.87. The historical result showed forest degradation in the past (1989–2019) of 4773.02 ha yr−1, considered as great forest degradation (GFD) and showed a declining status when moving with the projection (2019–2029) of 1508.53 ha yr−1 and overall there was a decline of 3956.90 ha yr−1 in the 1989–2029 time period. Moreover, the study also observed that dense forest was gradually degraded (good to bad) but, conversely, light forest was enhanced, which will continue in the future even to 2029 if no effective management is carried out. Therefore, by observing the GFD, through spatial forest health quality and forest degradation mapping and assessment, the study suggests a few policies that require the immediate attention of forest policy-makers to implement them immediately and ensure sustainable development in the SRF. Numéro de notice : A2020-752 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091016 Date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.3390/f11091016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96432
in Forests > vol 11 n° 9 (September 2020) . - N° 1016[article]Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process / Biswajit Nath in ISPRS International journal of geo-information, vol 9 n° 2 (February 2020)
![]()
[article]
Titre : Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process Type de document : Article/Communication Auteurs : Biswajit Nath, Auteur ; Zhihua Wang, Auteur ; Yong Ge, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aménagement paysager
[Termes IGN] automate cellulaire
[Termes IGN] chaîne de Markov
[Termes IGN] changement d'occupation du sol
[Termes IGN] Chine
[Termes IGN] croissance urbaine
[Termes IGN] faille géologique
[Termes IGN] modèle de Markov
[Termes IGN] modèle de simulation
[Termes IGN] modèle dynamique
[Termes IGN] occupation du sol
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] risque environnemental
[Termes IGN] risque naturel
[Termes IGN] séisme
[Termes IGN] système d'information géographique
[Termes IGN] utilisation du solRésumé : (auteur) Land use and land cover change (LULCC) has directly played an important role in the observed climate change. In this paper, we considered Dujiangyan City and its environs (DCEN) to study the future scenario in the years 2025, 2030, and 2040 based on the 2018 simulation results from 2007 and 2018 LULC maps. This study evaluates the spatial and temporal variations of future LULCC, including the future potential landscape risk (FPLR) area of the 2008 great (8.0 Mw) earthquake of south-west China. The Cellular automata–Markov chain (CA-Markov) model and multicriteria based analytical hierarchy process (MC-AHP) approach have been considered using the integration of remote sensing and GIS techniques. The analysis shows future LULC scenario in the years 2025, 2030, and 2040 along with the FPLR pattern. Based on the results of the future LULCC and FPLR scenarios, we have provided suggestions for the development in the close proximity of the fault lines for the future strong magnitude earthquakes. Our results suggest a better and safe planning approach in the Belt and Road Corridor (BRC) of China to control future Silk-Road Disaster, which will also be useful to urban planners for urban development in a safe and sustainable manner. Numéro de notice : A2020-112 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9020134 Date de publication en ligne : 24/02/2020 En ligne : https://doi.org/10.3390/ijgi9020134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94717
in ISPRS International journal of geo-information > vol 9 n° 2 (February 2020)[article]
Titre : Low level feature detection in SAR images Type de document : Thèse/HDR Auteurs : Chenguang Liu, Auteur ; Florence Tupin, Directeur de thèse ; Yann Gousseau, Directeur de thèse Editeur : Paris [France] : Télécom ParisTech Année de publication : 2020 Importance : 138 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l’Institut Polytechnique de Paris préparée à Télécom Paris, Spécialité de doctorat : Signal, Images, Automatique et robotiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] gradient
[Termes IGN] image radar moirée
[Termes IGN] modèle de Markov
[Termes IGN] segment de droiteRésumé : (auteur) In this thesis we develop low level feature detectors for Synthetic Aperture Radar (SAR) images to facilitate the joint use of SAR and optical data. Line segments and edges are very important low level features in images which can be used for many applications like image analysis, image registration and object detection. Contrarily to the availability of many efficient low level feature detectors dedicated to optical images, there are very few efficient line segment detector and edge detector for SAR images mostly because of the strong multiplicative noise. In this thesis we develop a generic line segment detector and an efficient edge detector for SAR images.The proposed line segment detector which is named as LSDSAR, is based on a Markovian a contrario model and the Helmholtz principle, where line segments are validated according to their meaningfulness. More specifically, a line segment is validated if its expected number of occurences in a random image under the hypothesis of the Markovian a contrario model is small. Contrarily to the usual a contrario approaches, the Markovian a contrario model allows strong filtering in the gradient computation step, since dependencies between local orientations of neighbouring pixels are permitted thanks to the use of a first order Markov chain. The proposed Markovian a contrario model based line segment detector LSDSAR benefit from the accuracy and efficiency of the new definition of the background model, indeed, many true line segments in SAR images are detected with a control of the number of false detections. Moreover, very little parameter tuning is required in the practical applications of LSDSAR. The second work of this thesis is that we propose a deep learning based edge detector for SAR images. The contributions of the proposed edge detector are two fold: 1) under the hypothesis that both optical images and real SAR images can be divided into piecewise constant areas, we propose to simulate a SAR dataset using optical dataset; 2) we propose to train a classical CNN (convolutional neural network) edge detector, HED, directly on the graident fields of images. This, by using an adequate method to compute the gradient, enables SAR images at test time to have statistics similar to the training set as inputs to the network. More precisely, the gradient distribution for all homogeneous areas are the same and the gradient distribution for two homogeneous areas across boundaries depends only on the ratio of their mean intensity values. The proposed method, GRHED, significantly improves the state-of-the-art, especially in very noisy cases such as 1-look images. Note de contenu : 1- Context
2- SAR basics, statistics of SAR images and data used in this thesis
I Line segment detection in SAR images
3- Introduction
4- LSD, a line segment detector with false detection control
5- LSDSAR, a generic line segment detector for SAR images
6- Experiments
II Edge detection in SAR images using CNNs
7- Introduction
8- Presentation of the HED method and of the training dataset
9- GRHED, introducing a hand-crafted layer before the usual CNNs
10- Experiments
11- Summary of the thesisNuméro de notice : 25878 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Spécialité : Signal, Images, Automatique et robotique : Paris : 2020 nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02861903/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95689 A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods / Yongjiu Feng in International journal of geographical information science IJGIS, vol 34 n° 1 (January 2020)
PermalinkPermalinkSpace, time, and situational awareness in natural hazards: a case study of Hurricane Sandy with social media data / Zheye Wang in Cartography and Geographic Information Science, Vol 46 n° 4 (July 2019)
PermalinkExamining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change / Hao Wu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)
PermalinkVideo event recognition and anomaly detection by combining gaussian process and hierarchical dirichlet process models / Michael Ying Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 4 (April 2018)
PermalinkAutomatic extraction of road networks from GPS traces / Jia Qiu in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 8 (August 2016)
PermalinkApport de la télédétection à l'analyse de la dynamique de l'occupation du sol à partir d'une utilisation couplée d'un modèle de markov et d'un automate cellulaire. Cas du département de Sintra (Centre-Ouest de la Cote d'Ivoire). / Vami Hermann N'guessan Bi in Revue Française de Photogrammétrie et de Télédétection, n° 204 (Octobre 2013)
PermalinkA hybrid multiview stereo algorithm for modeling urban scenes / Florent Lafarge in IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, vol 35 n° 1 (January 2013)
![]()
PermalinkUrban growth monitoring using remote sensing and geographic information system: a case study in the Twin Cities metropolitain area, Minnesota / F. Yuan in Geocarto international, vol 25 n° 3 (June 2010)
PermalinkPermalink