Descripteur



Etendre la recherche sur niveau(x) vers le bas
Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
![]()
[article]
Titre : Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh Type de document : Article/Communication Auteurs : Mohammad Emran Hasan, Auteur ; Biswajit Nath, Auteur ; A.H.M. Raihan Sarker, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] automate cellulaire
[Termes descripteurs IGN] Bangladesh
[Termes descripteurs IGN] classification par maximum de vraisemblance
[Termes descripteurs IGN] couvert forestier
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] dégradation de l'environnement
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] gestion forestière durable
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] modèle de Markov
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] réserve forestière
[Termes descripteurs IGN] réserve naturelle
[Termes descripteurs IGN] santé des forêts
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] système d'information géographiqueRésumé : (auteur) Overdependence on and exploitation of forest resources have significantly transformed the natural reserve forest of Sundarban, which shares the largest mangrove territory in the world, into a great degradation status. By observing these, a most pressing concern is how much degradation occurred in the past, and what will be the scenarios in the future if they continue? To confirm the degradation status in the past decades and reveal the future trend, we took Sundarban Reserve Forest (SRF) as an example, and used satellite Earth observation historical Landsat imagery between 1989 and 2019 as existing data and primary data. Moreover, a geographic information system model was considered to estimate land cover (LC) change and spatial health quality of the SRF from 1989 to 2029 based on the large and small tree categories. The maximum likelihood classifier (MLC) technique was employed to classify the historical images with five different LC types, which were further considered for future projection (2029) including trends based on 2019 simulation results from 1989 and 2019 LC maps using the Markov-cellular automata model. The overall accuracy achieved was 82.30%~90.49% with a kappa value of 0.75~0.87. The historical result showed forest degradation in the past (1989–2019) of 4773.02 ha yr−1, considered as great forest degradation (GFD) and showed a declining status when moving with the projection (2019–2029) of 1508.53 ha yr−1 and overall there was a decline of 3956.90 ha yr−1 in the 1989–2029 time period. Moreover, the study also observed that dense forest was gradually degraded (good to bad) but, conversely, light forest was enhanced, which will continue in the future even to 2029 if no effective management is carried out. Therefore, by observing the GFD, through spatial forest health quality and forest degradation mapping and assessment, the study suggests a few policies that require the immediate attention of forest policy-makers to implement them immediately and ensure sustainable development in the SRF. Numéro de notice : A2020-752 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091016 date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.3390/f11091016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96432
in Forests > vol 11 n° 9 (September 2020) . - N° 1016[article]Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process / Biswajit Nath in ISPRS International journal of geo-information, vol 9 n° 2 (February 2020)
![]()
[article]
Titre : Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process Type de document : Article/Communication Auteurs : Biswajit Nath, Auteur ; Zhihua Wang, Auteur ; Yong Ge, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aménagement paysager
[Termes descripteurs IGN] automate cellulaire
[Termes descripteurs IGN] chaîne de Markov
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] faille géologique
[Termes descripteurs IGN] modèle de Markov
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] processus d'analyse hiérarchique
[Termes descripteurs IGN] risque environnemental
[Termes descripteurs IGN] risque naturel
[Termes descripteurs IGN] séisme
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Land use and land cover change (LULCC) has directly played an important role in the observed climate change. In this paper, we considered Dujiangyan City and its environs (DCEN) to study the future scenario in the years 2025, 2030, and 2040 based on the 2018 simulation results from 2007 and 2018 LULC maps. This study evaluates the spatial and temporal variations of future LULCC, including the future potential landscape risk (FPLR) area of the 2008 great (8.0 Mw) earthquake of south-west China. The Cellular automata–Markov chain (CA-Markov) model and multicriteria based analytical hierarchy process (MC-AHP) approach have been considered using the integration of remote sensing and GIS techniques. The analysis shows future LULC scenario in the years 2025, 2030, and 2040 along with the FPLR pattern. Based on the results of the future LULCC and FPLR scenarios, we have provided suggestions for the development in the close proximity of the fault lines for the future strong magnitude earthquakes. Our results suggest a better and safe planning approach in the Belt and Road Corridor (BRC) of China to control future Silk-Road Disaster, which will also be useful to urban planners for urban development in a safe and sustainable manner. Numéro de notice : A2020-112 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9020134 date de publication en ligne : 24/02/2020 En ligne : https://doi.org/10.3390/ijgi9020134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94717
in ISPRS International journal of geo-information > vol 9 n° 2 (February 2020)[article]
Titre : Low level feature detection in SAR images Type de document : Thèse/HDR Auteurs : Chenguang Liu, Auteur ; Florence Tupin, Directeur de thèse ; Yann Gousseau, Directeur de thèse Editeur : Paris [France] : Télécom ParisTech Année de publication : 2020 Importance : 138 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l’Institut Polytechnique de Paris préparée à Télécom Paris, Spécialité de doctorat : Signal, Images, Automatique et robotiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] gradient
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] modèle de Markov
[Termes descripteurs IGN] segment de droiteRésumé : (auteur) In this thesis we develop low level feature detectors for Synthetic Aperture Radar (SAR) images to facilitate the joint use of SAR and optical data. Line segments and edges are very important low level features in images which can be used for many applications like image analysis, image registration and object detection. Contrarily to the availability of many efficient low level feature detectors dedicated to optical images, there are very few efficient line segment detector and edge detector for SAR images mostly because of the strong multiplicative noise. In this thesis we develop a generic line segment detector and an efficient edge detector for SAR images.The proposed line segment detector which is named as LSDSAR, is based on a Markovian a contrario model and the Helmholtz principle, where line segments are validated according to their meaningfulness. More specifically, a line segment is validated if its expected number of occurences in a random image under the hypothesis of the Markovian a contrario model is small. Contrarily to the usual a contrario approaches, the Markovian a contrario model allows strong filtering in the gradient computation step, since dependencies between local orientations of neighbouring pixels are permitted thanks to the use of a first order Markov chain. The proposed Markovian a contrario model based line segment detector LSDSAR benefit from the accuracy and efficiency of the new definition of the background model, indeed, many true line segments in SAR images are detected with a control of the number of false detections. Moreover, very little parameter tuning is required in the practical applications of LSDSAR. The second work of this thesis is that we propose a deep learning based edge detector for SAR images. The contributions of the proposed edge detector are two fold: 1) under the hypothesis that both optical images and real SAR images can be divided into piecewise constant areas, we propose to simulate a SAR dataset using optical dataset; 2) we propose to train a classical CNN (convolutional neural network) edge detector, HED, directly on the graident fields of images. This, by using an adequate method to compute the gradient, enables SAR images at test time to have statistics similar to the training set as inputs to the network. More precisely, the gradient distribution for all homogeneous areas are the same and the gradient distribution for two homogeneous areas across boundaries depends only on the ratio of their mean intensity values. The proposed method, GRHED, significantly improves the state-of-the-art, especially in very noisy cases such as 1-look images. Note de contenu : 1- Context
2- SAR basics, statistics of SAR images and data used in this thesis
I Line segment detection in SAR images
3- Introduction
4- LSD, a line segment detector with false detection control
5- LSDSAR, a generic line segment detector for SAR images
6- Experiments
II Edge detection in SAR images using CNNs
7- Introduction
8- Presentation of the HED method and of the training dataset
9- GRHED, introducing a hand-crafted layer before the usual CNNs
10- Experiments
11- Summary of the thesisNuméro de notice : 25878 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Spécialité : Signal, Images, Automatique et robotique : Paris : 2020 DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02861903/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95689 A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods / Yongjiu Feng in International journal of geographical information science IJGIS, vol 34 n° 1 (January 2020)
![]()
[article]
Titre : A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods Type de document : Article/Communication Auteurs : Yongjiu Feng, Auteur ; Xiaohua Tong, Auteur Année de publication : 2020 Article en page(s) : pp 74 - 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] automate cellulaire
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] dynamique spatiale
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] modèle de Markov
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] Shanghai (Chine)
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) We develop a new geographical cellular automata (CA) modeling framework, named UrbanCA, through reconstructing the essential CA structure and incorporating nonspatial, spatial, and heuristic approaches. The new UrbanCA is featured by 1) the improvement of the CA modeling framework by reformulating relationships among CA components, 2) the development of two scaling parameters to adjust the effects of transition probability and neighborhood, 3) the incorporation of a variety of statistical and heuristic methods to construct transition rules, and 4) the inclusion of urban planning regulations and spatial heterogeneities to project future urban scenarios. To illustrate the effectiveness of UrbanCA, we calibrate a CA model using artificial bee colony (ABC) to simulate the past urban patterns and predict future scenarios in Shanghai of China. The results show that UrbanCA under different scaling parameters is comparable to CA-Markov (as a reference model) concerning the accuracy of the end-state and change simulations, and is better than CA-Markov regarding the driving factor’s ability to explain the modeling outcomes. UrbanCA provides more choices compared to existing CA software packages, and the models are readily calibrated elsewhere to simulate the dynamic urban growth and assess the resulting natural and socioeconomic impacts. Numéro de notice : A2020-008 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1648813 date de publication en ligne : 02/08/2019 En ligne : https://doi.org/10.1080/13658816.2019.1648813 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94388
in International journal of geographical information science IJGIS > vol 34 n° 1 (January 2020) . - pp 74 - 97[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020011 SL Revue Centre de documentation Revues en salle Disponible Space, time, and situational awareness in natural hazards: a case study of Hurricane Sandy with social media data / Zheye Wang in Cartography and Geographic Information Science, Vol 46 n° 4 (July 2019)
![]()
[article]
Titre : Space, time, and situational awareness in natural hazards: a case study of Hurricane Sandy with social media data Type de document : Article/Communication Auteurs : Zheye Wang, Auteur ; Xinyue Ye, Auteur Année de publication : 2019 Article en page(s) : pp 334 - 346 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Information géographique
[Termes descripteurs IGN] catastrophe naturelle
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] espace-temps
[Termes descripteurs IGN] gestion de crise
[Termes descripteurs IGN] modèle de Markov
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] New York (Etats-Unis ; ville)
[Termes descripteurs IGN] outil d'aide à la décision
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] risque naturel
[Termes descripteurs IGN] tempêteRésumé : (Auteur) Various methods have been developed to investigate the geospatial information, temporal component, and message content in disaster-related social media data to enrich human-centric information for situational awareness. However, few studies have simultaneously analyzed these three dimensions (i.e. space, time, and content). With an attempt to bring a space–time perspective into situational awareness, this study develops a novel approach to integrate space, time, and content dimensions in social media data and enable a space–time analysis of detailed social responses to a natural disaster. Using Markov transition probability matrix and location quotient, we analyzed the Hurricane Sandy tweets in New York City and explored how people’s conversational topics changed across space and over time. Our approach offers potential to facilitate efficient policy/decision-making and rapid response in mitigations of damages caused by natural disasters. Numéro de notice : A2019-201 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2018.1483740 date de publication en ligne : 18/06/2018 En ligne : https://doi.org/10.1080/15230406.2018.1483740 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92657
in Cartography and Geographic Information Science > Vol 46 n° 4 (July 2019) . - pp 334 - 346[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2019041 SL Revue Centre de documentation Revues en salle Disponible Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change / Hao Wu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)
PermalinkVideo event recognition and anomaly detection by combining gaussian process and hierarchical dirichlet process models / Michael Ying Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 4 (April 2018)
PermalinkAutomatic extraction of road networks from GPS traces / Jia Qiu in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 8 (August 2016)
PermalinkApport de la télédétection à l'analyse de la dynamique de l'occupation du sol à partir d'une utilisation couplée d'un modèle de markov et d'un automate celllairecas du département de Sintra (Centre-Ouest de la Cote d'Ivoire). / Vami Hermann N'guessan Bi in Revue Française de Photogrammétrie et de Télédétection, n° 204 (Octobre 2013)
PermalinkA hybrid multi-view stereo algorithm for modeling urban scenes / Florent Lafarge in IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, vol 35 n° 1 (January 2013)
![]()
PermalinkUrban growth monitoring using remote sensing and geographic information system: a case study in the Twin Cities metropolitain area, Minnesota / F. Yuan in Geocarto international, vol 25 n° 3 (June 2010)
PermalinkPermalinkSpatio-temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm / J. Tang in International Journal of Remote Sensing IJRS, vol 28 n°15-16 (August 2007)
PermalinkLe WI-FI pour le positionnement et la navigation en intérieur / A. Betremieux in XYZ, n° 111 (juin - août 2007)
PermalinkPermalinkPermalinkPermalinkMonitoring and modelling cropland loss in rapidly growing urban and depopulating rural counties using remotely sensed data and GIS / A.N. Petrov in Geocarto international, vol 20 n° 4 (December 2005 - February 2006)
PermalinkCombining spectral and spatial information into hidden Markov models for unsupervised image classification / B. Tso in International Journal of Remote Sensing IJRS, vol 26 n° 10 (May 2005)
PermalinkA Bayesian approach to classification of multiresolution remote sensing data / G. Storvik in IEEE Transactions on geoscience and remote sensing, vol 43 n° 3 (March 2005)
Permalink7e conférence francophone sur l'apprentissage automatique, CAp 2005, [Plate-forme AFIA], 30 mai - 3 juin 2005, Nice, France / François Denis (2005)
PermalinkExtraction automatique des réseaux linéiques a partir d'images satellitaires et aériennes par processus Markov objet / C. Lacoste in Bulletin [Société Française de Photogrammétrie et Télédétection], n° 170 (Avril 2003)
PermalinkSegmentation temporelle et spatiale de données agricoles / J.F. Mari in Revue internationale de géomatique, vol 12 n° 4 (décembre 2002 – février 2003)
PermalinkConférence d'apprentissage 99, actes de CAP'99, Ecole Polytechnique, Palaiseau, 15-18 juin 1999 / Michèle Sebag (1999)
PermalinkExtraction and textural characterization of above-ground areas from aerial stereo pairs: a quality assessment / Caroline Baillard in ISPRS Journal of photogrammetry and remote sensing, vol 53 n° 2 (April - May 1998)
Permalink