Descripteur
Documents disponibles dans cette catégorie (56)



Etendre la recherche sur niveau(x) vers le bas
Mapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression / Haoyu Wang in Remote sensing of environment, vol 278 (September 2022)
![]()
[article]
Titre : Mapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression Type de document : Article/Communication Auteurs : Haoyu Wang, Auteur ; Xiuyuan Zhang, Auteur ; Shihong Du, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113088 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] croissance urbaine
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle de régression
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) Global urbanization changes land cover patterns and affects the living environment of humans. However, urbanization and its evolution process, i.e., conversions among diverse land covers, are hard to measure, as existing land cover maps usually have low temporal resolutions; conversely, long-term and temporally dense land cover maps, such as vegetation-impervious-soil decomposition maps base on MODIS, ignore the important land cover of cropland in urban evolution process (UEP). To resolve the issue, this study suggests a novel model named time-extended non-crop vegetation-impervious-cropland (Time V-I-C) to represent and quantify different stages of UEP; then, a normalized multi-objective T-ConvLSTM (NMT) method is proposed to unmix cropland, non-crop vegetation, and impervious based on the intra-annual remotely-sensed time series, and obtain their fractions in each pixel for generating UEP maps. Consequently, UEP maps from 2001 to 2018 are generated for two Chinese urban agglomerations, i.e., Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations. The mapping results have high accuracies with a small standard error of regression (SER) of 13.1%, small root mean square error (RMSE) of 12.6%, and small mean absolute error (MAE) of 8.4%, and the maps reveal the different UEP in the two urban agglomerations. Therefore, this study provides a new idea for expressing UEP and contributes to a wide range of urbanization studies and sustainable city development. Numéro de notice : A2022-511 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.rse.2022.113088 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113088 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101049
in Remote sensing of environment > vol 278 (September 2022) . - n° 113088[article]Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)
![]()
[article]
Titre : Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure Type de document : Article/Communication Auteurs : Alejandro Rodríguez-Vivancos, Auteur ; José Antonio Manzanera, Auteur ; Susana Martín-Fernández, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 447 - 465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de variance
[Termes IGN] Bootstrap (statistique)
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur d'échantillon
[Termes IGN] Espagne
[Termes IGN] forêt inéquienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pinus sylvestris
[Termes IGN] régression linéaire
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] structure-from-motionRésumé : (auteur) Airborne Laser Scanning (ALS) is widely extended in forest evaluation, although photogrammetry-based Structure from Motion (SfM) has recently emerged as a more affordable alternative. Return cloud metrics and their normalization using different typologies of Digital Terrain Models (DTM), either derived from SfM or from private or free access ALS, were evaluated. In addition, the influence of the return density (0.5–6.5 returns m-2) and the sampling intensity (0.3–3.4%) on the estimation of the most common stand structure variables were also analysed. The objective of this research is to gather all these questions in the same document, so that they serve as support for the planning of forest management. This study analyses the variables collected from 60 regularly distributed circular plots (r = 18 m) in a 150-ha of uneven-aged Scots pine stand. Results indicated that both ALS and SfM can be equally used to reduce the sampling error in the field inventories, but they showed differences when estimating the stand structure variables. ALS produced significantly better estimations than the SfM metrics for all the variables of interest, as well as the ALS-based normalization. However, the SfM point cloud produced better estimations when it was normalized with its own DTM, except for the dominant height. The return density did not have significant influence on the estimation of the stand structure variables in the range studied, while higher sampling intensities decreased the estimation errors. Nevertheless, these were stabilized at certain intensities depending on the variance of the stand structure variable. Numéro de notice : A2022-417 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10342-022-01447-7 Date de publication en ligne : 12/04/2022 En ligne : https://doi.org/10.1007/s10342-022-01447-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100780
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 447 - 465[article]Developing a data-fusing method for mapping fine-scale urban three-dimensional building structure / Xinxin Wu in Sustainable Cities and Society, vol 80 (May 2022)
![]()
[article]
Titre : Developing a data-fusing method for mapping fine-scale urban three-dimensional building structure Type de document : Article/Communication Auteurs : Xinxin Wu, Auteur ; Jinpei Ou, Auteur ; Youyue Wen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103716 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage automatique
[Termes IGN] cartographie urbaine
[Termes IGN] données localisées 3D
[Termes IGN] données multisources
[Termes IGN] fusion de données
[Termes IGN] hauteur du bâti
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle de régression
[Termes IGN] morphologie urbaine
[Termes IGN] Shenzhen
[Termes IGN] ville durable
[Termes IGN] ville intelligenteRésumé : (auteur) Understanding urban morphology is essential for various urban management studies and local environmental issues and guiding sustainable city development. Existing studies mainly focus on analyzing urban morphology from the horizontal aspect, while the urban vertical structure has rarely been discussed due to the scarcity of reliable and fine-scale urban three-dimensional (3-D) building data. This study develops an effective data-fusing methodology to estimate the heights of individual buildings at a city scale. We examined a machine-learning regression model by collecting public materials, including multi-source remote sensing-(RS)-based products, building-derived features, and relevant data to verify its performance in building height estimation. By applying the model in Shenzhen City, a dense city in the Guangdong-Hong Kong-Macao Greater Bay Area, results demonstrated that integrating rich multi-source explanatory variables could achieve high-accuracy building height retrieval. Using multiple building morphological metrics derived by building height data as proxy measures, the urban 3-D form patterns were further analyzed to understand current heterogeneous urban morphological structures. The proposed methodology can be conveniently applied to worldwide cities for urban 3-D morphology retrieval. Also, the available building height information is useful for planners to design morphological control for cities and thus contributes to sustainable and smart city development. Numéro de notice : A2022-268 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.103716 Date de publication en ligne : 12/02/2022 En ligne : https://doi.org/10.1016/j.scs.2022.103716 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100279
in Sustainable Cities and Society > vol 80 (May 2022) . - n° 103716[article]Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/05/2022])
![]()
[article]
Titre : Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Adam Sheka Kanu, Auteur ; Lingbo Yang, Auteur Année de publication : 2022 Article en page(s) : pp 1225 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-SAR
[Termes IGN] jeu de données localisées
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de régression
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] polarisation
[Termes IGN] rizièreRésumé : (Auteur) Three Sentinel-1A datasets in vertical transmitted and horizontal received (VH) and vertical transmitted and vertical received (VV) polarisations, and the linear combination of VH and VV (VHVV) are evaluated for rice green leaf area index (LAI) estimation using four machine learning regression models [Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT)]. Results showed that for the entire growing season, VV outperformed VH, recording an R2 of 0.68 and an RMSE of 0.98 m2/m2 with the k-NN model. However, VHVV produced the most accurate estimates with GBDT (R2 of 0.82 and RMSE of 0.68 m2/m2), followed by that of VHVV with RF (R2 of 0.78 and RMSE of 0.90 m2/m2). Our findings have further confirmed that combining VH and VV data can achieve improved rice growth modelling, and that tree-based algorithms can better handle data dimensionality. Numéro de notice : A2022-274 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1773545 Date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1773545 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100753
in Geocarto international > vol 37 n° 5 [01/05/2022] . - pp 1225 - 1236[article]Aboveground biomass estimation of an agro-pastoral ecology in semi-arid Bundelkhand region of India from Landsat data: a comparison of support vector machine and traditional regression models / Dibyendu Deb in Geocarto international, vol 37 n° 4 (April 2022)
![]()
[article]
Titre : Aboveground biomass estimation of an agro-pastoral ecology in semi-arid Bundelkhand region of India from Landsat data: a comparison of support vector machine and traditional regression models Type de document : Article/Communication Auteurs : Dibyendu Deb, Auteur ; Shovik Deb, Auteur ; Debasis Chakraborty, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1043 - 1058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] distribution spatiale
[Termes IGN] image Landsat-8
[Termes IGN] Inde
[Termes IGN] indice de végétation
[Termes IGN] modèle de régression
[Termes IGN] point d'appui
[Termes IGN] régression linéaire
[Termes IGN] régression multiple
[Termes IGN] séparateur à vaste marge
[Termes IGN] zone semi-arideRésumé : (auteur) This study compared the traditional regression models and support vector machine (SVM) for estimation of aboveground biomass (ABG) of an agro-pastoral ecology using vegetation indices derived from Landsat 8 satellite data as explanatory variables . The area falls in the Shivpuri Tehsil of Madhya Pradesh, India, which is predominantly a semi-arid tract of the Bundelkhand region. The Enhanced Vegetation Index-1 (EVI-1) was identified as the most suitable input variable for the regression models, although the collective effect of a number of the vegetation indices was evident. The EVI-1 was also the most suitable input variable to SVM, due to its capacity to distinctly differentiate diverse vegetation classes. The performance of SVM was better over regression models for estimation of the AGB. Based on the SVM-derived and the ground observations, the AGB of the area was precisely mapped for croplands, grassland and rangelands over the entire region. Numéro de notice : A2022-394 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1756461 Date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1756461 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100688
in Geocarto international > vol 37 n° 4 (April 2022) . - pp 1043 - 1058[article]Identifying locations for new bike-sharing stations in Glasgow: an analysis of spatial equity and demand factors / Jeneva Beairsto in Annals of GIS, vol 28 n° 2 (April 2022)
PermalinkSimulating fire-safe cities using a machine learning-based algorithm for the complex urban forms of developing nations: a case of Mumbai India / Vaibhav Kumar in Geocarto international, vol 37 n° 4 (April 2022)
PermalinkDynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 3 ([01/03/2022])
PermalinkInfluence of determinant factors towards soil erosion using ordinary least squared regression in GIS domain / Imran Ahmad in Applied geomatics, vol 14 n° 1 (March 2022)
PermalinkA novel regression method for harmonic analysis of time series / Qiang Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 185 (March 2022)
PermalinkHistorical shoreline analysis and field monitoring at Ennore coastal stretch along the Southeast coast of India / M. Dhananjayan in Marine geodesy, vol 45 n° 1 (January 2022)
PermalinkPermalinkA rapid assessment method for earthquake-induced landslide casualties based on GIS and logistic regression model / Yuqian Dai in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
PermalinkEstimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models / Arne Nothdurft in Forest ecology and management, vol 502 (15 december 2021)
PermalinkDiffuse attenuation coefficient (Kd) from ICESat-2 ATLAS spaceborne Lidar using random-forest regression / Forrest Corcoran in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 11 (November 2021)
Permalink