Descripteur
Termes IGN > ingénierie > systémique > modélisation > modèle dynamique
modèle dynamiqueSynonyme(s)modèle spatiotemporel dynamique |
Documents disponibles dans cette catégorie (76)



Etendre la recherche sur niveau(x) vers le bas
Multiscale assimilation of Sentinel and Landsat data for soil moisture and Leaf Area Index predictions using an ensemble-Kalman-filter-based assimilation approach in a heterogeneous ecosystem / Nicola Montaldo in Remote sensing, vol 14 n° 14 (July-2 2022)
![]()
[article]
Titre : Multiscale assimilation of Sentinel and Landsat data for soil moisture and Leaf Area Index predictions using an ensemble-Kalman-filter-based assimilation approach in a heterogeneous ecosystem Type de document : Article/Communication Auteurs : Nicola Montaldo, Auteur ; Andrea Gaspa, Auteur ; Roberto Corona, Auteur Année de publication : 2022 Article en page(s) : n° 3458 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] assimilation des données
[Termes IGN] bassin méditerranéen
[Termes IGN] écosystème
[Termes IGN] filtre de Kalman
[Termes IGN] humidité du sol
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Leaf Area Index
[Termes IGN] modèle dynamique
[Termes IGN] modèle hydrographique
[Termes IGN] Sardaigne
[Termes IGN] zone semi-arideRésumé : (auteur) Data assimilation techniques allow researchers to optimally merge remote sensing observations in ecohydrological models, guiding them for improving land surface fluxes predictions. Presently, freely available remote sensing products, such as those of Sentinel 1 radar, Landsat 8 sensors, and Sentinel 2 sensors, allow the monitoring of land surface variables (e.g., radar backscatter for soil moisture and the normalized difference vegetation index (NDVI) and for leaf area index (LAI)) at unprecedentedly high spatial and time resolutions, appropriate for heterogeneous ecosystems, typical of semiarid ecosystems characterized by contrasting vegetation components (grass and trees) competing for water use. A multiscale assimilation approach that assimilates radar backscatter and grass and tree NDVI in a coupled vegetation dynamic–land surface model is proposed. It is based on the ensemble Kalman filter (EnKF), and it is not limited to assimilating remote sensing data for model predictions, but it uses assimilated data for dynamically updating key model parameters (the ENKFdc approach), including saturated hydraulic conductivity and grass and tree maintenance respiration coefficients, which are highly sensitive parameters of soil–water balance and biomass budget models, respectively. The proposed EnKFdc assimilation approach facilitated good predictions of soil moisture, grass, and tree LAI in a heterogeneous ecosystem in Sardinia for a 3-year period with contrasting hydrometeorological (dry vs. wet) conditions. Contrary to the EnKF-based approach, the proposed EnKFdc approach performed well for the full range of hydrometeorological conditions and parameters, even assuming extremely biased model conditions with very high or low parameter values compared with the calibrated (“true”) values. The EnKFdc approach is crucial for soil moisture and LAI predictions in winter and spring, key seasons for water resources management in Mediterranean water-limited ecosystems. The use of ENKFdc also enabled us to predict evapotranspiration and carbon flux well, with errors of less than 4% and 15%, respectively; such results were obtained even with extremely biased initial model conditions. Numéro de notice : A2022-574 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14143458 En ligne : https://doi.org/10.3390/rs14143458 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101293
in Remote sensing > vol 14 n° 14 (July-2 2022) . - n° 3458[article]Global forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis / Jinpei Chen in GPS solutions, vol 26 n° 3 (July 2022)
![]()
[article]
Titre : Global forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis Type de document : Article/Communication Auteurs : Jinpei Chen, Auteur ; Nan Zhi, Auteur ; Haofan Liao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 69 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse diachronique
[Termes IGN] analyse spectrale
[Termes IGN] apprentissage profond
[Termes IGN] carte ionosphérique mondiale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] correction ionosphérique
[Termes IGN] modèle dynamique
[Termes IGN] positionnement par GNSS
[Termes IGN] temps de convergence
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) The widely used GNSS correction services for high precision positioning take advantage of accurate real-time TEC forecasting based on vertical total electron content (VTEC) maps. The methods for modeling and forecasting are mainly based on overly simplified assumptions, which in principle cannot reflect the real situations due to limitations of the mathematical formulations. Therefore, these methods cannot comprehensively capture the features of ionospheric TEC in spatial–temporal series. To overcome the problems caused by such assumptions, we combine ConvLSTM (convolutional long short-term memory) with spectrum analysis. The method allows the extraction of high-resolution spatial–temporal patterns of the ionospheric VTEC maps and accelerates the convergence time of neural networks. Extensive experiments have been carried out for short- and long-term forecasting and demonstrated that the performance of our method is better than other state-of-the-art models developed for various time series analysis methods. Based on the data from global ionospheric maps (GIMs) products, the results show that the root-mean-square error (RMSE) of global VTEC forecasting by our method substantially improves for two hours intervals over the years 2015, 2016, 2017 and 2019 compared to existing methods, specifically, 20–50% reduction on 1 or 2 h forecasting in terms of RMSE. In addition, the method is sufficient to support real-time forecasting since it takes less than one second to output global forecasting solutions. With these properties, we can facilitate real-time and highly accurate ionosphere correction services beneficial to numerous GNSS correct services and positioning terminals. Numéro de notice : A2022-378 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01253-z Date de publication en ligne : 13/04/2022 En ligne : https://doi.org/10.1007/s10291-022-01253-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100638
in GPS solutions > vol 26 n° 3 (July 2022) . - n° 69[article]Simulating future LUCC by coupling climate change and human effects based on multi-phase remote sensing data / Zihao Huang in Remote sensing, vol 14 n° 7 (April-1 2022)
![]()
[article]
Titre : Simulating future LUCC by coupling climate change and human effects based on multi-phase remote sensing data Type de document : Article/Communication Auteurs : Zihao Huang, Auteur ; Xuejian Li, Auteur ; Qiang Du, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1698 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] automate cellulaire
[Termes IGN] changement climatique
[Termes IGN] changement d'utilisation du sol
[Termes IGN] Chine
[Termes IGN] écosystème forestier
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] interaction homme-milieu
[Termes IGN] modèle de simulation
[Termes IGN] modèle dynamique
[Termes IGN] modèle numérique de surface
[Termes IGN] puits de carbone
[Termes IGN] simulation spatialeRésumé : (auteur) Future land use and cover change (LUCC) simulations play an important role in providing fundamental data to reveal the carbon cycle response of forest ecosystems to LUCC. Subtropical forests have great potential for carbon sequestration, yet their future dynamics under natural and human influences are unclear. Zhejiang Province in China is an important distribution area for subtropical forests. For forest management, it is of great significance to explore the future dynamic changes of subtropical forests in Zhejiang. As a popular LUCC spatial simulation model, the cellular automata (CA) model coupled with machine learning and LUCC quantitative demand models such as system dynamics (SD) can achieve effective LUCC simulation. Therefore, we first integrated a back propagation neural network (BPNN), a CA, and a SD model as a BPNN_CA_SD (BCS) coupled model for future LUCC simulation and then designed a slow development scenario (SD_Scenario), a harmonious development scenario (HD_Scenario), a baseline development scenario (BD_Scenario), and a fast development scenario (FD_Scenario), combining climate change and human disturbance. Thirdly, we obtained future land-use patterns in Zhejiang Province from 2014 to 2084 under multiple scenarios, and finally, we analyzed the temporal and spatial changes of land use and discussed the subtropical forest dynamics of the future. The results showed the following: (1) The overall accuracy was approximately 0.8, the kappa coefficient was 0.75, and the figure of merit (FOM) value was over 28% when using the BCS model to predict LUCC, indicating that the model could predict the consistent change of LUCC accurately. (2) The future evolution of the LUCC under different scenarios varied, with the growth of bamboo forests and the decline of coniferous forests in the FD_Scenario being prominent among the forest dynamics changes. Compared with 2014, the bamboo forest in 2084 will increase by 37%, while the coniferous forest will decrease by 25%. (3) Comparing the area and spatial change of the subtropical forests, the SD_Scenario was found to be beneficial for the forest ecology. These results can provide an important decision-making reference for land-use planning and sustainable forest development in Zhejiang Province. Numéro de notice : A2022-281 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14071698 Date de publication en ligne : 31/03/2022 En ligne : https://doi.org/10.3390/rs14071698 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100297
in Remote sensing > vol 14 n° 7 (April-1 2022) . - n° 1698[article]Investigating the role of wind disturbance in tropical forests through a forest dynamics model and satellite observations / E-Ping Rau (2022)
![]()
Titre : Investigating the role of wind disturbance in tropical forests through a forest dynamics model and satellite observations Type de document : Thèse/HDR Auteurs : E-Ping Rau, Auteur ; Jérôme Chave, Directeur de thèse Editeur : Toulouse : Université de Toulouse 3 Paul Sabatier Année de publication : 2022 Importance : 184 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de Toulouse 3 Paul SabatierLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse forestière
[Termes IGN] canopée
[Termes IGN] chablis (sylviculture)
[Termes IGN] cyclone
[Termes IGN] forêt tropicale
[Termes IGN] Guyane française
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle dynamique
[Termes IGN] perturbation écologique
[Termes IGN] précipitation
[Termes IGN] risque naturel
[Termes IGN] sécheresse
[Termes IGN] traitement d'image radar
[Termes IGN] ventIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Natural disturbances have an important influence on the structure, composition and functioning of tropical forests and a role in the regulation of biogeochemical cycles. The frequency and intensity of natural disturbances are modified by climate change: a better knowledge of their mechanism of action is necessary to predict the consequences of this modification. Modeling allows us to evaluate the role of each of the ecological processes and their link with environmental factors. Remote sensing tools inform us about the structure and functioning of forests at large scales, and can be useful for the calibration and validation of vegetation models. In this thesis, I employed both approaches to examine how tropical forests are shaped by natural disturbances, particularly wind, which is a major disturbance factor in many tropical regions. First, I evaluated the transferability of a spatially explicit, individual-based model via sensitivity testing and calibration of global parameters. The model correctly predicts forest structure at two contrasting sites, and its response is consistent with variations in climate forcing. Calibration of a small number of key parameters was required, including the parameter controlling mortality and crown allometry. To investigate the sensitivity of the model to mortality, I implemented a wind damage module based on biophysical principles and coupled with wind speed to model forest responses to extreme wind events. With increasing disturbance level, canopy height decreased steadily but biomass showed a non-linear response. Wind intensity had a strong impact on canopy height and biomass, but not the frequency of extreme wind events. Finally, I tested whether radar data from Sentinel-1 satellites could be used to detect gaps due to natural disturbances in French Guiana. The Sentinel-1 data detected more natural gaps above 0.2 ha than the optical satellite data, and they showed a spatial pattern consistent with the optical images. The level of disturbance did not vary with altitude. We found more disturbance during dry seasons, which could be due to the delayed response of precipitation rather than the direct response of drought. In conclusion, this thesis demonstrates that the integration between modeling and remote sensing sheds light on the effects of natural disturbances on tropical forests. The resulting results can be used to study other types of disturbances and their interactions on a large scale. Note de contenu : General introduction
General methods
1: Transferability of an individual- and trait-based forest dynamics model: a test case across the tropics
1.1 Abstract
1.2 Introduction
1.3 Materials and methods
1.4 Results
1.5 Discussion
1.6 Acknowledgements and author contributions
1.7 Supplementary data
2: Wind speed controls forest structure in subtropical forests exposed to cyclones: a case study using an individual-based model
2.1 Abstract
2.2 Introduction
2.3 Material and methods
2.4 Results
2.5 Discussion
2.6 Acknowledgments and author contributions
2.7 Supplementary data
3: Detecting Natural Disturbances in Tropical Forests Using Sentinel-1 SAR Data: a Test in French Guiana
3.1 Abstract
3.2 Introduction
3.3 Methods
3.4 Results
3.5 Discussions
3.6 Acknowledgments and author contributions
3.7 Supplementary data
General discussion and conclusionsNuméro de notice : 26836 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Ecologie, biodiversité et évolution : Toulouse 3 : 2022 nature-HAL : Thèse DOI : sans Date de publication en ligne : 20/06/2022 En ligne : https://tel.archives-ouvertes.fr/tel-03699667/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101075 Calibration of cellular automata urban growth models from urban genesis onwards - a novel application of Markov chain Monte Carlo approximate Bayesian computation / Jingyan Yu in Computers, Environment and Urban Systems, vol 90 (November 2021)
![]()
[article]
Titre : Calibration of cellular automata urban growth models from urban genesis onwards - a novel application of Markov chain Monte Carlo approximate Bayesian computation Type de document : Article/Communication Auteurs : Jingyan Yu, Auteur ; Alex Hagen-Zanker, Auteur ; Naratip Santitissadeekorn, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 101689 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse diachronique
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] Corine Land Cover
[Termes IGN] croissance urbaine
[Termes IGN] estimation bayesienne
[Termes IGN] Grande-Bretagne
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle dynamiqueRésumé : (auteur) Cellular Automata (CA) models are widely used to study spatial dynamics of urban growth and evolving patterns of land use. One complication across CA approaches is the relatively short period of data available for calibration, providing sparse information on patterns of change and presenting problematic signal-to-noise ratios. To overcome the problem of short-term calibration, this study investigates a novel approach in which the model is calibrated based on the urban morphological patterns that emerge from a simulation starting from urban genesis, i.e., a land cover map completely void of urban land. The application of the model uses the calibrated parameters to simulate urban growth forward in time from a known urban configuration. This approach to calibration is embedded in a new framework for the calibration and validation of a Constrained Cellular Automata (CCA) model of urban growth. The investigated model uses just four parameters to reflect processes of spatial agglomeration and preservation of scarce non-urban land at multiple spatial scales and makes no use of ancillary layers such as zoning, accessibility, and physical suitability. As there are no anchor points that guide urban growth to specific locations, the parameter estimation uses a goodness-of-fit (GOF) measure that compares the built density distribution inspired by the literature on fractal urban form. The model calibration is a novel application of Markov Chain Monte Carlo Approximate Bayesian Computation (MCMC-ABC). This method provides an empirical distribution of parameter values that reflects model uncertainty. The validation uses multiple samples from the estimated parameters to quantify the propagation of model uncertainty to the validation measures. The framework is applied to two UK towns (Oxford and Swindon). The results, including cross-application of parameters, show that the models effectively capture the different urban growth patterns of both towns. For Oxford, the CCA correctly produces the pattern of scattered growth in the periphery, and for Swindon, the pattern of compact, concentric growth. The ability to identify different modes of growth has both a theoretical and practical significance. Existing land use patterns can be an important indicator of future trajectories. Planners can be provided with insight in alternative future trajectories, available decision space, and the cumulative effect of parcel-by-parcel planning decisions. Numéro de notice : A2021-616 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101689 Date de publication en ligne : 12/08/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101689 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98367
in Computers, Environment and Urban Systems > vol 90 (November 2021) . - n° 101689[article]PermalinkA hybrid data model for dynamic GIS: application to marine geomorphological dynamics / Younes Hamdani in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)
PermalinkDynamic optimization models for displaying outdoor advertisement at the right time and place / Meng Huang in International journal of geographical information science IJGIS, vol 35 n° 6 (June 2021)
PermalinkNumerical modelling for analysis of the effect of different urban green spaces on urban heat load patterns in the present and in the future / Tamás Gál in Computers, Environment and Urban Systems, vol 87 (May 2021)
PermalinkGeovisualization of COVID-19: State of the art and opportunities / Yu Lan in Cartographica, vol 56 n° 1 (Spring 2021)
PermalinkDynamic human body reconstruction and motion tracking with low-cost depth cameras / Kangkan Wang in The Visual Computer, vol 37 n° 3 (March 2021)
PermalinkSpace-time disease mapping by combining Bayesian maximum entropy and Kalman filter: the BME-Kalman approach / Bisong Hu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
PermalinkA dynamic bidirectional coupled surface flow model for flood inundation simulation / Chunbo Jiang in Natural Hazards and Earth System Sciences, Vol 21 n° 2 (February 2021)
PermalinkGeographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
PermalinkStand-scale climate change impacts on forests over large areas: transient responses and projection uncertainties / NIca Huber in Ecological Applications, vol 31 ([01/02/2021])
Permalink