Descripteur
Termes descripteurs IGN > systémique > modélisation > modèle dynamique
modèle dynamiqueSynonyme(s)modèle spatiotemporel dynamique |



Etendre la recherche sur niveau(x) vers le bas
Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling Type de document : Article/Communication Auteurs : Stefanos Georganos, Auteur ; Tais Grippa, Auteur ; Assane Niang Gadiaga, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 121 -1 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autocorrélation spatiale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Dakar
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] population
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity. Numéro de notice : A2021-080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595177 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96822
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 121 -1 36[article]Dynamic mechanism of blown sand hazard formation at the Jieqiong section of the Lhasa–Shigatse railway / Shengbo Xie in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
![]()
[article]
Titre : Dynamic mechanism of blown sand hazard formation at the Jieqiong section of the Lhasa–Shigatse railway Type de document : Article/Communication Auteurs : Shengbo Xie, Auteur ; Jianjun Qu, Auteur ; Yingjun Pang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 154 - 166 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] météorologie locale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] prévention des risques
[Termes descripteurs IGN] sable
[Termes descripteurs IGN] Tibet
[Termes descripteurs IGN] variation saisonnière
[Termes descripteurs IGN] vent de sable
[Termes descripteurs IGN] vitesse
[Termes descripteurs IGN] voie ferréeRésumé : (auteur) Blown sand hazards at the Jieqiong section of the Lhasa–Shigatse railway are severe, and their formation mechanism is unclear. Moreover, sand prevention and control work cannot be carried out. Therefore, the dynamic mechanism of blown sand at the Jieqiong section of the Lhasa–Shigatse Railway was investigated by field observation, laboratory analysis, and calculation. Results show that the yearly sand–moving wind at the Jieqiong section commonly originates from the SW direction. The yearly resultant drift direction and the yearly resultant angle of the maximum possible sand transport quantity are NE direction. The angle between railway trend and sand transport direction is 5°–30°. During dry season, sand materials are blown up by the wind, forming wind–sand flow and movement to the NE direction, at which they are blocked by the railway roadbed. Consequently, accumulation occurs and causes serious damage. Strong wind and dryness are synchronous within a season. The directions of sand source and prevailing wind are consistent, thereby aggravating the blown sand dynamic further. The present results provide a reference for controlling sand hazards in the locale. Numéro de notice : A2021-109 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475705.2020.1863268 date de publication en ligne : 28/12/2020 En ligne : https://doi.org/10.1080/19475705.2020.1863268 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96906
in Geomatics, Natural Hazards and Risk > vol 12 n° 1 (2021) . - pp 154 - 166[article]Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates / Robert E. Keane in Forest ecology and management, vol 477 ([01/12/2020])
![]()
[article]
Titre : Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates Type de document : Article/Communication Auteurs : Robert E. Keane, Auteur ; Lisa M. Holsinger, Auteur ; Rachel Loehman, Auteur Année de publication : 2020 Article en page(s) : 12 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] écosystème
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] habitat forestier
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] modélisation de la forêt
[Termes descripteurs IGN] Montana (Etats-Unis)
[Termes descripteurs IGN] substitution
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Land managers need new tools for planning novel futures due to climate change. Species distribution modeling (SDM) has been used extensively to predict future distributions of species under different climates, but their map products are often too coarse for fine-scale operational use. In this study we developed a flexible, efficient, and robust method for mapping current and future distributions and abundances of vegetation species and communities at the fine spatial resolutions that are germane to land management. First, we mapped Potential Vegetation Types (PVTs) using conventional statistical modeling techniques (Random Forests) that used bioclimatic ecosystem process and climate variables as predictors. We obtained over 50% accuracy across 13 mapped PVTs for our study area. We then applied future climate projections as climate input to the Random Forest model to generate future PVT maps, and used field data describing the occurrence of tree and non-tree species in each PVT category to model and map species distribution for current and future climate. These maps were then compared to two previous SDM mapping efforts with over 80% agreement and equivalent accuracy. Because PVTs represent the biophysical potential of the landscape to support vegetation communities as opposed to the vegetation that currently exists, they can be readily linked to climate forecasts and correlated with other, climate-sensitive ecological processes significant in land management, such as fire regimes and site productivity. Numéro de notice : A2020-624 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2020.118498 date de publication en ligne : 18/08/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96022
in Forest ecology and management > vol 477 [01/12/2020] . - 12 p.[article]Semantic trajectory segmentation based on change-point detection and ontology / Yuan Gao in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
![]()
[article]
Titre : Semantic trajectory segmentation based on change-point detection and ontology Type de document : Article/Communication Auteurs : Yuan Gao, Auteur ; Longfei Huang, Auteur ; Jun Feng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2361 - 2394 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cible mobile
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] information sémantique
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] ontologie
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] probabilité
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] trajectoireRésumé : (auteur) Trajectory segmentation is a fundamental issue in GPS trajectory analytics. The task of dividing a raw trajectory into reasonable sub-trajectories and annotating them based on moving subject’s intentions and application domains remains a challenge. This is due to the highly dynamic nature of individuals’ patterns of movement and the complex relationships between such patterns and surrounding points of interest. In this paper, we present a framework called SEMANTIC-SEG for automatic semantic segmentation of trajectories from GPS readings. For the decomposition component of SEMANTIC-SEG, a moving pattern change detection (MPCD) algorithm is proposed to divide the raw trajectory into segments that are homogeneous in their movement conditions. A generic ontology and a spatiotemporal probability model for segmentation are then introduced to implement a bottom-up ontology-based reasoning for semantic enrichment. The experimental results on three real-world datasets show that MPCD can more effectively identify the semantically significant change-points in a pattern of movement than four existing baseline methods. Moreover, experiments are conducted to demonstrate how the proposed SEMANTIC-SEG framework can be applied. Numéro de notice : A2020-689 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1798966 date de publication en ligne : 04/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1798966 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96226
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2361 - 2394[article]Analyzing the joint effect of forest management and wildfires on living biomass and carbon stocks in Spanish forests / Patricia Adame in Forests, vol 11 n°11 (November 2020)
![]()
[article]
Titre : Analyzing the joint effect of forest management and wildfires on living biomass and carbon stocks in Spanish forests Type de document : Article/Communication Auteurs : Patricia Adame, Auteur ; Isabel Canellas, Auteur ; Daniel Moreno-Fernández, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 1219 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] biomasse
[Termes descripteurs IGN] Espagne
[Termes descripteurs IGN] forêt méditerranéenne
[Termes descripteurs IGN] gestion forestière durable
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] inventaire forestier étranger (données)
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] politique forestière
[Termes descripteurs IGN] puits de carbone
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Research Highlights: This is the first study that has considered forest management and wildfires in the balance of living biomass and carbon stored in Mediterranean forests. Background and Objectives: The Kyoto Protocol and Paris Agreement request countries to estimate and report carbon emissions and removals from the forest in a transparent and reliable way. The aim of this study is to forecast the carbon stored in the living biomass of Spanish forests for the period 2000–2050 under two forest management alternatives and three forest wildfires scenarios. Materials and Methods: To produce these estimates, we rely on data from the Spanish National Forest Inventory (SNFI) and we use the European Forestry Dynamics Model (EFDM). SNFI plots were classified according to five static (forest type, known land-use restrictions, ownership, stand structure and bioclimatic region) and two dynamic factors (quadratic mean diameter and total volume). The results were validated using data from the latest SNFI cycle (20-year simulation). Results: The increase in wildfire occurrence will lead to a decrease in biomass/carbon between 2000 and 2050 of up to 22.7% in the medium–low greenhouse gas emissions scenario (B2 scenario) and of up to 32.8% in the medium–high greenhouse gas emissions scenario (A2 scenario). Schoolbook allocation management could buffer up to 3% of wildfire carbon loss. The most stable forest type under both wildfire scenarios are Dehesas. As regards bioregions, the Macaronesian area is the most affected and the Alpine region, the least affected. Our validation test revealed a total volume underestimation of 2.2% in 20 years. Conclusions: Forest wildfire scenarios provide more realistic simulations in Mediterranean forests. The results show the potential benefit of forest management, with slightly better results in schoolbook forest management compared to business-as-usual forest management. The EFDM harmonized approach simulates the capacity of forests to store carbon under different scenarios at national scale in Spain, providing important information for optimal decision-making on forest-related policies. Numéro de notice : A2020-758 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11111219 date de publication en ligne : 19/11/2020 En ligne : https://doi.org/10.3390/f11111219 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96471
in Forests > vol 11 n°11 (November 2020) . - n° 1219[article]Towards dynamic forest trafficability prediction using open spatial data, hydrological modelling and sensor technology / Aura Salmivaara in Forestry, an international journal of forest research, vol 93 n° 5 (October 2020)
PermalinkA spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery / Bo Yang in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
PermalinkNear-real time forecasting and change detection for an open ecosystem with complex natural dynamics / Jasper A. Slingsby in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkLearning evolving user’s behaviors on location-based social networks / Ruizhi Wu in Geoinformatica [en ligne], vol 24 n° 3 (July 2020)
PermalinkUsing machine learning to synthesize spatiotemporal data for modelling DBH-height and DBH-height-age relationships in boreal forests / Jiaxin Chen in Forest ecology and management, Vol 466 (15 June 2020)
PermalinkFine-scale dasymetric population mapping with mobile phone and building use data based on grid Voronoi method / Zhenzhong Peng in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkImproved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation / Eslam Ali in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
PermalinkVisualizing when, where, and how fires happen in U.S. parks and protected areas / Nicole C. Inglis in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
PermalinkA global analysis of cities’ geosocial temporal signatures for points of interest hours of operation / Kevin Sparks in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
PermalinkSpatiotemporal variation of NDVI in the vegetation growing season in the source region of the yellow river, China / Mingyue Wang in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
Permalink