Descripteur



Etendre la recherche sur niveau(x) vers le bas
Georeferencing with self-calibration for airborne full-waveform Lidar data using digital elevation model / Qinghua Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
![]()
[article]
Titre : Georeferencing with self-calibration for airborne full-waveform Lidar data using digital elevation model Type de document : Article/Communication Auteurs : Qinghua Li, Auteur ; Jie Shan, Auteur Année de publication : 2021 Article en page(s) : pp 43 - 52 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] autoétalonnage
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] étalonnage de capteur (imagerie)
[Termes descripteurs IGN] forme d'onde
[Termes descripteurs IGN] géoréférencement
[Termes descripteurs IGN] modèle mathématique
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] point d'appui
[Termes descripteurs IGN] synchronisationRésumé : (Auteur) Precise georeferencing of airborne full-waveform lidar is a complex process. On one hand, no ground control points are visible due to heavy canopy. While on the other hand, precise georeferencing relies on ground control. As an alternative, we propose to use an available digital elevation model (DEM ) as control. The mathematical framework minimizes the difference between the lidar DEM and the reference DEM. Our solution consists of two steps: initial optimization to find reliable ground points through iterative filtering and georeferencing, and fine optimization to achieve precise georeferencing and lidar system calibration. Through this approach, the wave-form-derived DEM can best fit the reference DEM, with a mean of 0.937 m and standard deviation of 0.792 m, while the time-synchronization offset and boresight angles are simultaneously determined, i.e., self-calibrated. This development provides a novel georeferencing approach with self-calibration for lidar data without using conventional ground control points. Numéro de notice : A2021-056 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.1.43 date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.14358/PERS.87.1.43 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96766
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 1 (January 2021) . - pp 43 - 52[article]Inferencing hourly traffic volume using data-driven machine learning and graph theory / Zhiyan Yi in Computers, Environment and Urban Systems, vol 85 (January 2021)
![]()
[article]
Titre : Inferencing hourly traffic volume using data-driven machine learning and graph theory Type de document : Article/Communication Auteurs : Zhiyan Yi, Auteur ; Xiaoyue Cathy Liu, Auteur ; Nikola Markovic, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 101548 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] échantillonnage de données
[Termes descripteurs IGN] Extreme Gradient Machine
[Termes descripteurs IGN] inférence statistique
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] planification
[Termes descripteurs IGN] théorie des graphes
[Termes descripteurs IGN] trafic routier
[Termes descripteurs IGN] Utah (Etas-Unis)Résumé : (auteur) Traffic volume is a critical piece of information in many applications, such as transportation long-range planning and traffic operation analysis. Effectively capturing traffic volumes on a network scale is beneficial to Transportation Systems Management & Operations (TSM&O). Yet it is impractical to install sensors to cover a large road network. To address this issue, spatial prediction techniques are widely performed to estimate traffic volumes at sites without sensors. In retrospect, most relevant studies resort to machine learning methods and treat each prediction location independently during the training process, ignoring the potential spatial dependency among them. This paper presents an innovative spatial prediction method of hourly traffic volume on a network scale. To achieve this, we applied a state-of-the-art tree ensemble model - extreme gradient boosting tree (XGBoost) - to handle the large-scale features and hourly traffic volume samples, due to the model's powerful scalability. Moreover, spatial dependency among road segments is taken into account in the proposed model using graph theory. Specifically, we created a traffic network graph leveraging probe trajectory data, and implemented a graph-based approach - breadth first search (BFS) - to search neighboring sites in this graph for computing spatial dependency. The proposed spatial dependency feature is subsequently incorporated as a new feature fed into XGBoost. The proposed model is tested on the road network in the state of Utah. Numerical results not only indicate high computational efficiency of the proposed model, but also demonstrate significant improvement in prediction accuracy of hourly traffic volume comparing with the benchmarked models. Numéro de notice : A2021-004 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101548 date de publication en ligne : 24/09/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101548 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96271
in Computers, Environment and Urban Systems > vol 85 (January 2021) . - n° 101548[article]Modeling the risk of robbery in the city of Tshwane, South Africa / Nicolas Kemp in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)
![]()
[article]
Titre : Modeling the risk of robbery in the city of Tshwane, South Africa Type de document : Article/Communication Auteurs : Nicolas Kemp, Auteur ; Gregory D. Breetzke, Auteur ; Anthony Cooper, Auteur Année de publication : 2021 Article en page(s) : pp 29 - 42 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] Afrique du sud (état)
[Termes descripteurs IGN] criminalité
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] prévention des risques
[Termes descripteurs IGN] sécurité civile
[Termes descripteurs IGN] zone à risqueRésumé : (auteur) In this study, we model the risk of robbery in the City of Tshwane in South Africa. We use the collective knowledge of two prominent spatial theories of crime (social disorganization theory, and crime pattern theory) to guide the selection of data and employ rudimentary geospatial techniques to create a crude model that identifies the risk of future robbery incidents in the city. The model is validated using actual robbery incidences recorded for the city. Overall the model performs reasonably well with approximately 70% of future robbery incidences accurately identified within a small subset of the overall model. Developing countries such as South Africa are in dire need of crime risk intensity models that are simple, and not data intensive to allocate scarce crime prevention resources in a more optimal fashion. It is anticipated that this model is a first step in this regard. Numéro de notice : A2021-017 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1814872 date de publication en ligne : 10/09/2020 En ligne : https://doi.org/10.1080/15230406.2020.1814872 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96455
in Cartography and Geographic Information Science > vol 48 n° 1 (January 2021) . - pp 29 - 42[article]RegNet: a neural network model for predicting regional desirability with VGI data / Wenzhong Shi in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : RegNet: a neural network model for predicting regional desirability with VGI data Type de document : Article/Communication Auteurs : Wenzhong Shi, Auteur ; Zhewei Liu, Auteur ; Zhenlin An, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 175 - 192 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] Hong-Kong
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] niveau local
[Termes descripteurs IGN] participation du public
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] réseau social géodépendantRésumé : (auteur) Volunteered geographic information can be used to predict regional desirability. A common challenge regarding previous works is that intuitive empirical models, which are inaccurate and bring in perceptual bias, are traditionally used to predict regional desirability. This results from the fact that the hidden interactions between user online check-ins and regional desirability have not been revealed and clearly modelled yet. To solve the problem, a novel neural network model ‘RegNet’ is proposed. The user check-in history is input into a neural network encoder structure firstly for redundancy reduction and feature learning. The encoded representation is then fed into a hidden-layer structure and the regional desirability is predicted. The proposed RegNet is data-driven and can adaptively model the unknown mappings from input to output, without presumed bias and prior knowledge. We conduct experiments with real-world datasets and demonstrate RegNet outperforms state-of-the-art methods in terms of ranking quality and prediction accuracy of rating. Additionally, we also examine how the structure of encoder affects RegNet performance and suggest on choosing proper sizes of encoded representation. This work demonstrates the effectiveness of data-driven methods in modelling the hidden unknown relationships and achieving a better performance over traditional empirical methods. Numéro de notice : A2021-023 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1768261 date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1768261 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96526
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 175 - 192[article]Application of various strategies and methodologies for landslide susceptibility maps on a basin scale: the case study of Val Tartano, Italy / Vasil Yordanov in Applied geomatics, vol 12 n° 4 (December 2020)
![]()
[article]
Titre : Application of various strategies and methodologies for landslide susceptibility maps on a basin scale: the case study of Val Tartano, Italy Type de document : Article/Communication Auteurs : Vasil Yordanov, Auteur ; Maria Antonia Brovelli, Auteur Année de publication : 2020 Article en page(s) : 23 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] cartographie géomorphologique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] figuré linéaire
[Termes descripteurs IGN] indice de risque
[Termes descripteurs IGN] inventaire
[Termes descripteurs IGN] Lombardie
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] modèle statistique
[Termes descripteurs IGN] régression logistiqueRésumé : (auteur) Landslide susceptibility mapping is a crucial initial step in risk mitigation strategies. Landslide hazards are widely spread all over the world and, as such, mapping the relevant susceptibility levels is in constant research and development. As a result, numerous modelling techniques and approaches have been adopted by scholars, implementing these models at different scales and with different terrains, in search of the best-performing strategy. Nevertheless, a direct comparison is not possible unless the strategies are implemented under the same environmental conditions and scenarios. The aim of this work is to implement three statistical-based models (Statistical Index, Logistic Regression, and Random Forest) at the basin scale, using various scenarios for the input datasets (terrain variables), training samples and ratios, and validation metrics. A reassessment of the original input data was carried out to improve the model performance. In total, 79 maps were obtained using different combinations with some highly satisfactory outcomes and others that are barely acceptable. Random Forest achieved the highest scores in most of the cases, proving to be a reliable modelling approach. While Statistical Index passes the evaluation tests, most of the resulting maps were considered unreliable. This research highlighted the importance of a complete and up-to-date landslide inventory, the knowledge of local conditions, as well as the pre- and post-analysis evaluation of the input and output combinations. Numéro de notice : A2020-695 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1007/s12518-020-00344-1 date de publication en ligne : 09/11/2020 En ligne : https://doi.org/10.1007/s12518-020-00344-1 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96244
in Applied geomatics > vol 12 n° 4 (December 2020) . - 23 p.[article]Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates / Robert E. Keane in Forest ecology and management, vol 477 ([01/12/2020])
PermalinkExploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkSemantic‐based urban growth prediction / Marvin Mc Cutchan in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkThe utility of fused airborne laser scanning and multispectral data for improved wind damage risk assessment over a managed forest landscape in Finland / Ranjith Gopalakrishnan in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
PermalinkUsing multi-agent simulation to predict natural crossing points for pedestrians and choose locations for mid-block crosswalks / Egor Smirrnov in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkSea surface temperature and high water temperature occurrence prediction using a long short-term memory model / Minkyu Kim in Remote sensing, vol 12 n° 21 (November 2020)
PermalinkUrban expansion in Auckland, New Zealand: a GIS simulation via an intelligent self-adapting multiscale agent-based model / Tingting Xu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
PermalinkUsing climate-sensitive 3D city modeling to analyze outdoor thermal comfort in urban areas / Rabeeh Hosseinihaghighi in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkCompensation of geometric parameter errors for terrestrial laser scanner by integrating intensity correction / Wanli Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkCoupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones / Xun Liang in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
Permalink