Descripteur
Documents disponibles dans cette catégorie (21)



Etendre la recherche sur niveau(x) vers le bas
A constrained extended Kalman filter based on LS-VCE formulated by condition equations with prediction of cross-covariances / Vahid Mahboub in Survey review, Vol 53 n° 380 (September 2021)
![]()
[article]
Titre : A constrained extended Kalman filter based on LS-VCE formulated by condition equations with prediction of cross-covariances Type de document : Article/Communication Auteurs : Vahid Mahboub, Auteur ; Narges Fatholahi, Auteur Année de publication : 2021 Article en page(s) : pp 422 - 435 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] algorithme de filtrage
[Termes IGN] analyse de variance
[Termes IGN] filtre adaptatif
[Termes IGN] filtre de Kalman
[Termes IGN] matrice de covariance
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle non linéaire
[Termes IGN] modèle stochastiqueRésumé : (auteur) A constrained extended Kalman filter (CEKF) based on least-squares variance component estimation (LS-VCE) is generally developed by condition equations since the proper prediction of dispersion matrices is one of the main bottlenecks in the KF algorithms. Here we investigate four problems which have not been simultaneously considered yet. These problems are examination of non-linearty of dynamic model, VCE, general non-linear state constraints and fairly general stochastic model. Although a few contributions proposed some adaptive KF in particular based on Helmert’s VCE method, they developed their filters for special problems with some restrictive conditions such as independence of all variables and/or linearity of the dynamic model. Also some of these filters did not apply VCE methods to all parts of the dynamic model. In this contribution, we try to overcome all of these restrictions. Moreover, LS-VCE method gives some added advantages over other VCE methods. First the new formulation of CEKF is developed by condition equations with prediction of all possible cross-covariances as algorithm 1. Then the LS-VCE method is applied to it after some modifications which results in an adaptive constrained extended Kalman filter (ACEKF) as the second algorithm. Numéro de notice : A2021-636 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2020.1814030 Date de publication en ligne : 07/09/2020 En ligne : https://doi.org/10.1080/00396265.2020.1814030 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98300
in Survey review > Vol 53 n° 380 (September 2021) . - pp 422 - 435[article]Predicting user activity intensity using geographic interactions based on social media check-in data / Jing Li in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
![]()
[article]
Titre : Predicting user activity intensity using geographic interactions based on social media check-in data Type de document : Article/Communication Auteurs : Jing Li, Auteur ; Wenyue Guo, Auteur ; Haiyan Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 555 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] interaction spatiale
[Termes IGN] mobilité
[Termes IGN] modèle non linéaire
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau neuronal récurrent
[Termes IGN] utilisateurRésumé : (auteur) Predicting user activity intensity is crucial for various applications. However, existing studies have two main problems. First, as user activity intensity is nonstationary and nonlinear, traditional methods can hardly fit the nonlinear spatio-temporal relationships that characterize user mobility. Second, user movements between different areas are valuable, but have not been utilized for the construction of spatial relationships. Therefore, we propose a deep learning model, the geographical interactions-weighted graph convolutional network-gated recurrent unit (GGCN-GRU), which is good at fitting nonlinear spatio-temporal relationships and incorporates users’ geographic interactions to construct spatial relationships in the form of graphs as the input. The model consists of a graph convolutional network (GCN) and a gated recurrent unit (GRU). The GCN, which is efficient at processing graphs, extracts spatial features. These features are then input into the GRU, which extracts their temporal features. Finally, the GRU output is passed through a fully connected layer to obtain the predictions. We validated this model using a social media check-in dataset and found that the geographical interactions graph construction method performs better than the baselines. This indicates that our model is appropriate for fitting the complex nonlinear spatio-temporal relationships that characterize user mobility and helps improve prediction accuracy when considering geographic flows. Numéro de notice : A2021-588 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10080555 Date de publication en ligne : 17/08/2021 En ligne : https://doi.org/10.3390/ijgi10080555 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98206
in ISPRS International journal of geo-information > vol 10 n° 8 (August 2021) . - n° 555[article]Detail injection-based deep convolutional neural networks for pansharpening / Liang-Jian Deng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)
![]()
[article]
Titre : Detail injection-based deep convolutional neural networks for pansharpening Type de document : Article/Communication Auteurs : Liang-Jian Deng, Auteur ; Gemine Vivone, Auteur ; Cheng Jin, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 6995 - 7010 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multirésolution
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image à basse résolution
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] injection d'image
[Termes IGN] modèle non linéaire
[Termes IGN] pansharpening (fusion d'images)Résumé : (auteur) The fusion of high spatial resolution panchromatic (PAN) data with simultaneously acquired multispectral (MS) data with the lower spatial resolution is a hot topic, which is often called pansharpening. In this article, we exploit the combination of machine learning techniques and fusion schemes introduced to address the pansharpening problem. In particular, deep convolutional neural networks (DCNNs) are proposed to solve this issue. The latter is combined first with the traditional component substitution and multiresolution analysis fusion schemes in order to estimate the nonlinear injection models that rule the combination of the upsampled low-resolution MS image with the extracted details exploiting the two philosophies. Furthermore, inspired by these two approaches, we also developed another DCNN for pansharpening. This is fed by the direct difference between the PAN image and the upsampled low-resolution MS image. Extensive experiments conducted both at reduced and full resolutions demonstrate that this latter convolutional neural network outperforms both the other detail injection-based proposals and several state-of-the-art pansharpening methods. Numéro de notice : A2021-639 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3031366 En ligne : https://doi.org/10.1109/TGRS.2020.3031366 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98293
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 8 (August 2021) . - pp 6995 - 7010[article]Bias in least-squares adjustment of implicit functional models / Michael Lösler in Survey review, Vol 53 n° 378 (May 2021)
![]()
[article]
Titre : Bias in least-squares adjustment of implicit functional models Type de document : Article/Communication Auteurs : Michael Lösler, Auteur ; Rüdiger Lehmann, Auteur ; Frank Neitzel, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 223 - 234 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] compensation par moindres carrés
[Termes IGN] erreur systématique
[Termes IGN] fonction de Bessel
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle non linéaire
[Termes IGN] modèle stochastique
[Termes IGN] série de Taylor
[Termes IGN] substitution
[Termes IGN] transformation de coordonnéesRésumé : (auteur) To evaluate the benefit of a measurement procedure onto the estimated parameters, the dispersion of the parameters is usually used. To draw objective conclusions, unbiased or at least almost unbiased estimates are required. In geodesy, most of the functional relations are nonlinear but the statistical properties of the estimates are usually obtained by a linearised substitute-problem. Since the statistical properties of linear models cannot be passed to the nonlinear case, the estimates are biased. In this contribution, the bias of the parameters as well as the bias of the dispersion in nonlinear implicit models is investigated, using a second-order Taylor expansion. Nonlinear implicit models are general models and are used, for instance, in the framework of surface-fitting or coordinate transformation, which considers errors for the coordinates in source and target system. The bias is introduced as a further indicator to validate the benefit of an adapted measurement process using more precise measuring instruments. Since some parametrisations yield an ill-posed problem, also the case of a singular equation system is investigated. To demonstrate the second-order effect onto the estimates, a best-fitting plane is adjusted under varying configurations. Such a configuration is recommended in evaluating uncertainties of optical 3D measuring systems, e.g. in the framework of the VDI/VDE 2634 guideline. The estimated bias is used as an indicator whether a large number of poor observations provides better results than a small but precise sample. Numéro de notice : A2021-404 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2020.1715680 Date de publication en ligne : 29/01/2020 En ligne : https://doi.org/10.1080/00396265.2020.1715680 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97717
in Survey review > Vol 53 n° 378 (May 2021) . - pp 223 - 234[article]Comparison of spatially and nonspatially explicit nonlinear mixed effects models for Norway spruce individual tree growth under single-tree selection / Simone Bianchi in Forests, vol 11 n° 12 (December 2020)
![]()
[article]
Titre : Comparison of spatially and nonspatially explicit nonlinear mixed effects models for Norway spruce individual tree growth under single-tree selection Type de document : Article/Communication Auteurs : Simone Bianchi, Auteur ; Mari Myllymäki, Auteur ; Jouni Siipilehto, Auteur ; Hannu Salminen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 1338 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] arbre (flore)
[Termes IGN] croissance des arbres
[Termes IGN] forêt boréale
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle non linéaire
[Termes IGN] Picea abies
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Background and Objectives: Continuous cover forestry is of increasing importance, but operational forest growth models are still lacking. The debate is especially open if more complex spatial approaches would provide a worthwhile increase in accuracy. Our objective was to compare a nonspatial versus a spatial approach for individual Norway spruce tree growth models under single-tree selection cutting.
Materials and Methods: We calibrated nonlinear mixed models using data from a long-term experiment in Finland (20 stands with 3538 individual trees for 10,238 growth measurements). We compared the use of nonspatial versus spatial predictors to describe the competitive pressure and its release after cutting. The models were compared in terms of Akaike Information Criteria (AIC), root mean square error (RMSE), and mean absolute bias (MAB), both with the training data and after cross-validation with a leave-one-out method at stand level.
Results: Even though the spatial model had a lower AIC than the nonspatial model, RMSE and MAB of the two models were similar. Both models tended to underpredict growth for the highest observed values when the tree-level random effects were not used. After cross-validation, the aggregated predictions at stand level well represented the observations in both models. For most of the predictors, the use of values based on trees’ height rather than trees’ diameter improved the fit. After single-tree selection cutting, trees had a growth boost both in the first and second five-year period after cutting, however, with different predicted intensity in the two models.
Conclusions: Under the research framework here considered, the spatial modeling approach was not more accurate than the nonspatial one. Regarding the single-tree selection cutting, an intervention regime spaced no more than 15 years apart seems necessary to sustain the individual tree growth. However, the model’s fixed effect parts were not able to capture the high growth of the few fastest-growing trees, and a proper estimation of site potential is needed for uneven-aged stands.Numéro de notice : A2020-578 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.3390/f11121338 Date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.3390/f11121338 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97034
in Forests > vol 11 n° 12 (December 2020) . - n° 1338[article]Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors / Svetlana Saarela in Forest ecosystems, vol 7 (2020)
PermalinkA novel nonlinear hyperspectral unmixing approach for images of oil spills at sea / Ying Li in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
PermalinkEstimating wheat yields in Australia using climate records, satellite image time series and machine learning methods / Elisa Kamir in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkInnovative techniques of photogrammetry for 3D modeling / Vicenzo Barrile in Applied geomatics, Vol 11 n° 4 (December 2019)
PermalinkRobust M–M unscented Kalman filtering for GPS/IMU navigation / Cheng Yang in Journal of geodesy, vol 93 n° 8 (August 2019)
PermalinkScale effect in indirect measurement of leaf area index / Guangjian Yan in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)
PermalinkEléments de géodésie et de la théorie des moindres carrés / Abdelmajid Ben Hadj Salem (février 2016)
PermalinkWeighted total least squares for solving non-linear problem: GNSS point positioning / S. Jazaeri in Survey review, vol 47 n° 343 (July 2015)
PermalinkLASSO-type estimators for semiparametric nonlinear mixed-effects models estimation / Ana Arribas-Gil in Statistics and Computing, vol 24 n° 3 (May 2014)
PermalinkNonlinear unmixing of hyperspectral data using semi-nonnegative matrix factorization / Naoto Yokoya in IEEE Transactions on geoscience and remote sensing, vol 52 n° 2 (February 2014)
Permalink