Descripteur
Documents disponibles dans cette catégorie (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Increasing the accuracy of crowdsourced information on land cover via a voting procedure weighted by information inferred from the contributed data / Giles M. Foody in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Increasing the accuracy of crowdsourced information on land cover via a voting procedure weighted by information inferred from the contributed data Type de document : Article/Communication Auteurs : Giles M. Foody, Auteur ; Linda M. See, Auteur ; Steffen Fritz, Auteur ; Inian Moorthy, Auteur ; Christoph Perger, Auteur ; Christian Schill, Auteur ; Doreen S. Boyd, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] cartographie collaborative
[Termes IGN] données localisées des bénévoles
[Termes IGN] modèle de classe latente
[Termes IGN] occupation du sol
[Termes IGN] pondération
[Termes IGN] précision de la classificationRésumé : (Auteur) Simple consensus methods are often used in crowdsourcing studies to label cases when data are provided by multiple contributors. A basic majority vote rule is often used. This approach weights the contributions from each contributor equally but the contributors may vary in the accuracy with which they can label cases. Here, the potential to increase the accuracy of crowdsourced data on land cover identified from satellite remote sensor images through the use of weighted voting strategies is explored. Critically, the information used to weight contributions based on the accuracy with which a contributor labels cases of a class and the relative abundance of class are inferred entirely from the contributed data only via a latent class analysis. The results show that consensus approaches do yield a classification that is more accurate than that achieved by any individual contributor. Here, the most accurate individual could classify the data with an accuracy of 73.91% while a basic consensus label derived from the data provided by all seven volunteers contributing data was 76.58%. More importantly, the results show that weighting contributions can lead to a statistically significant increase in the overall accuracy to 80.60% by ignoring the contributions from the volunteer adjudged to be the least accurate in labelling. Numéro de notice : A2018-093 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030080 Date de publication en ligne : 25/02/2018 En ligne : https://doi.org/10.3390/ijgi7030080 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89505
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Latent class modeling for site- and non-site-specific classification accuracy assessment without ground data / Giles M. Foody in IEEE Transactions on geoscience and remote sensing, vol 50 n° 7 Tome 2 (July 2012)
[article]
Titre : Latent class modeling for site- and non-site-specific classification accuracy assessment without ground data Type de document : Article/Communication Auteurs : Giles M. Foody, Auteur Année de publication : 2012 Article en page(s) : pp 2827 - 2838 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification automatique
[Termes IGN] estimation de précision
[Termes IGN] modèle de classe latente
[Termes IGN] précision de la classificationRésumé : (Auteur) Accuracy assessment should be a fundamental component of an image classification analysis and is typically undertaken following either a non-site- or a site-specific methodology. The assessment of classification accuracy is, however, often difficult, with many challenges associated with the ground data typically required. Using a series of classifications of two test sites, this paper shows that accuracy assessment from both perspectives is possible through the use of a latent class modeling approach in the absence of ground data. This is possible because the parameters of a latent class model that explains the observed associations in class labeling made by a series of classifications provide estimates of class cover and conditional probabilities of class membership that equate to popular non-site- and site-specific (producer's accuracy) measures of accuracy, respectively. Additionally, the latent class model provides a new classification that could be evaluated by traditional means if ground data are available. The classification of each test site derived from the latent class model was accurate, being of equivalent accuracy to a conventional ensemble classification that was based on the same series of classifications for a site. The ability to derive a highly accurate classification and yield estimates of classification accuracy without ground data to form a testing set indicates the considerable promise of the method and a means to reduce demands for costly ground data that may also be a source of error due to imperfections. Numéro de notice : A2012-321 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2011.2174156 Date de publication en ligne : 19/12/2011 En ligne : https://doi.org/10.1109/TGRS.2011.2174156 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31767
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 7 Tome 2 (July 2012) . - pp 2827 - 2838[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2012071B RAB Revue Centre de documentation En réserve L003 Disponible