Descripteur
Documents disponibles dans cette catégorie (6)



Etendre la recherche sur niveau(x) vers le bas
A compilation of snow cover datasets for Svalbard: A multi-sensor, multi-model study / Hannah Vickers in Remote sensing, vol 13 n°10 (May-2 2021)
![]()
[article]
Titre : A compilation of snow cover datasets for Svalbard: A multi-sensor, multi-model study Type de document : Article/Communication Auteurs : Hannah Vickers, Auteur ; Eirik Malnes, Auteur ; Ward van Pelt, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2002 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] données multicapteurs
[Termes IGN] image à haute résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] manteau neigeux
[Termes IGN] modélisation
[Termes IGN] Normalized Difference Snow Index
[Termes IGN] série temporelle
[Termes IGN] surveillance hydrologique
[Termes IGN] SvalbardRésumé : (auteur) Reliable and accurate mapping of snow cover are essential in applications such as water resource management, hazard forecasting, calibration and validation of hydrological models and climate impact assessments. Optical remote sensing has been utilized as a tool for snow cover monitoring over the last several decades. However, consistent long-term monitoring of snow cover can be challenging due to differences in spatial resolution and retrieval algorithms of the different generations of satellite-based sensors. Snow models represent a complementary tool to remote sensing for snow cover monitoring, being able to fill in temporal and spatial data gaps where a lack of observations exist. This study utilized three optical remote sensing datasets and two snow models with overlapping periods of data coverage to investigate the similarities and discrepancies in snow cover estimates over Nordenskiöld Land in central Svalbard. High-resolution Sentinel-2 observations were utilized to calibrate a 20-year MODIS snow cover dataset that was subsequently used to correct snow cover fraction estimates made by the lower resolution AVHRR instrument and snow model datasets. A consistent overestimation of snow cover fraction by the lower resolution datasets was found, as well as estimates of the first snow-free day (FSFD) that were, on average, 10–15 days later when compared with the baseline MODIS estimates. Correction of the AVHRR time series produced a significantly slower decadal change in the land-averaged FSFD, indicating that caution should be exercised when interpreting climate-related trends from earlier lower resolution observations. Substantial differences in the dynamic characteristics of snow cover in early autumn were also present between the remote sensing and snow model datasets, which need to be investigated separately. This work demonstrates that the consistency of earlier low spatial resolution snow cover datasets can be improved by using current-day higher resolution datasets. Numéro de notice : A2021-438 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13102002 Date de publication en ligne : 20/05/2021 En ligne : https://doi.org/10.3390/rs13102002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97822
in Remote sensing > vol 13 n°10 (May-2 2021) . - n° 2002[article]A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection / Xi Wu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
![]()
[article]
Titre : A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection Type de document : Article/Communication Auteurs : Xi Wu, Auteur ; Zhenwei Shi, Auteur ; Zhengxia Zou, Auteur Année de publication : 2021 Article en page(s) : pp 87 - 104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] altitude
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection des nuages
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] image Gaofen
[Termes IGN] information géographique
[Termes IGN] latitude
[Termes IGN] longitude
[Termes IGN] modèle statistique
[Termes IGN] neige
[Termes IGN] Normalized Difference Snow IndexRésumé : (auteur) Geographic information such as the altitude, latitude, and longitude are common but fundamental meta-records in remote sensing image products. In this paper, it is shown that such a group of records provides important priors for cloud and snow detection in remote sensing imagery. The intuition comes from some common geographical knowledge, where many of them are important but are often overlooked. For example, it is generally known that snow is less likely to exist in low-latitude or low-altitude areas, and clouds in different geographic may have various visual appearances. Previous cloud and snow detection methods simply ignore the use of such information, and perform detection solely based on the image data (band reflectance). Due to the neglect of such priors, most of these methods are difficult to obtain satisfactory performance in complex scenarios (e.g., cloud-snow coexistence). In this paper, a novel neural network called “Geographic Information-driven Network (GeoInfoNet)” is proposed for cloud and snow detection. In addition to the use of the image data, the model integrates the geographic information at both training and detection phases. A “geographic information encoder” is specially designed, which encodes the altitude, latitude, and longitude of imagery to a set of auxiliary maps and then feeds them to the detection network. The proposed network can be trained in an end-to-end fashion with dense robust features extracted and fused. A new dataset called “Levir_CS” for cloud and snow detection is built, which contains 4,168 Gaofen-1 satellite images and corresponding geographical records, and is over 20× larger than other datasets in this field. On “Levir_CS”, experiments show that the method achieves 90.74% intersection over union of cloud and 78.26% intersection over union of snow. It outperforms other state of the art cloud and snow detection methods with a large margin. Feature visualizations also show that the method learns some important priors which is close to the common sense. The proposed dataset and the code of GeoInfoNet are available in https://github.com/permanentCH5/GeoInfoNet. Numéro de notice : A2021-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.023 Date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97187
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 87 - 104[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021041 SL Revue Centre de documentation Revues en salle Disponible 081-2021043 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Sea ice extent detection in the Bohai Sea using Sentinel-3 OLCI data / Hua Su in Remote sensing, Vol 11 n° 20 (October-2 2019)
![]()
[article]
Titre : Sea ice extent detection in the Bohai Sea using Sentinel-3 OLCI data Type de document : Article/Communication Auteurs : Hua Su, Auteur ; Bowen Ji, Auteur ; Yunpeng Wang, Auteur Année de publication : 2019 Article en page(s) : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande infrarouge
[Termes IGN] changement climatique
[Termes IGN] Chine, mer de
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] glace de mer
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-OLCI
[Termes IGN] Normalized Difference Snow Index
[Termes IGN] réflectanceRésumé : (auteur) Sea ice distribution is an important indicator of ice conditions and regional climate change in the Bohai Sea (China). In this study, we monitored the spatiotemporal distribution of the Bohai Sea ice in the winter of 2017–2018 by developing sea ice information indexes using 300 m resolution Sentinel-3 Ocean and Land Color Instrument (OLCI) images. We assessed and validated the index performance using Sentinel-2 MultiSpectral Instrument (MSI) images with higher spatial resolution. The results indicate that the proposed Normalized Difference Sea Ice Information Index (NDSIIIOLCI), which is based on OLCI Bands 20 and 21, can be used to rapidly and effectively detect sea ice but is somewhat affected by the turbidity of the seawater in the southern Bohai Sea. The novel Enhanced Normalized Difference Sea Ice Information Index (ENDSIIIOLCI), which builds on NDSIIIOLCI by also considering OLCI Bands 12 and 16, can monitor sea ice more accurately and effectively than NDSIIIOLCI and suffers less from interference from turbidity. The spatiotemporal evolution of the Bohai Sea ice in the winter of 2017–2018 was successfully monitored by ENDSIIIOLCI. The results show that this sea ice information index based on OLCI data can effectively extract sea ice extent for sediment-laden water and is well suited for monitoring the evolution of Bohai Sea ice in winter. Numéro de notice : A2019-557 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs11202436 Date de publication en ligne : 29/10/2019 En ligne : https://doi.org/10.3390/rs11202436 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94214
in Remote sensing > Vol 11 n° 20 (October-2 2019) . - 17 p.[article]
Titre : Fusion de données de télédétection haute résolution pour le suivi de la neige Type de document : Thèse/HDR Auteurs : Théo Masson, Auteur ; Jocelyn Chanussot, Directeur de thèse Editeur : Grenoble [France] : Université Grenoble Alpes Année de publication : 2018 Importance : 180 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur de la Communauté Université Grenoble Alpes, spécialité : Signal Image Parole TelecomsLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] fusion de données
[Termes IGN] image à haute résolution
[Termes IGN] image hyperspectrale
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] manteau neigeux
[Termes IGN] neige
[Termes IGN] Normalized Difference Snow Index
[Termes IGN] problème inverse
[Termes IGN] série temporelle
[Termes IGN] variabilitéIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Les acquisitions de télédétection ont des caractéristiques complémentaires en termes de résolution spatiale et temporelle et peuvent mesurer différents aspects de la couverture neigeuse (propriétés physiques de surface, type de neige, etc.). En combinant plusieurs acquisitions, il devrait être possible d'obtenir un suivi précis et continu de la neige. Cependant, cet objectif se heurte à la complexité du traitement des images satellites et à la confusion possible entre les différents matériaux observés. Plus particulièrement, l’accès à l’information fractionnelle, c’est-à-dire à la proportion de neige dans chaque pixel, nécessite de retrouver la proportion de l’ensemble des matériaux qui se trouvent dans celui-ci. Ces proportions sont accessibles via des méthodes d’inversions ou démélange spectral se basant sur la résolution spectrale des images obtenues. Le défi général est alors d’arriver à exploiter correctement les différentes informations de natures différentes qui nous sont apportées par les différentes acquisitions afin de produire des cartes d’enneigement précises. Les objectifs de la thèse sont alors au nombre de trois et peuvent se résumer par trois grandes interrogations qui permettent de traiter les différents points évoqués:- Quelles sont les limitations actuelles de l’état de l'art pour l’observation spatiale optique de la neige ?- Comment exploiter les séries temporelles pour s’adapter à la variabilité spectrale des matériaux ?- Est-il possible de généraliser la fusion de données pour une acquisition multimodale à partir de capteurs optiques ?Une étude complète des différents produits de neige issus du satellite MODIS est ainsi proposée, permettant l’identification des nombreuses limitations dont la principale est le haut taux d’erreurs lors de la reconstitution de la fraction (environ 30%). Parmi ces résultats sont notamment identifiés des problèmes liés aux méthodes de démélange face à la variabilité spectrale des matériaux. Face à ces limitations nous avons exploité les séries temporelles MODIS pour proposer une nouvelle approche d’estimation des endmembers, étape critique du démélange spectral. La faible évolution temporelle du milieu (hors neige) est alors utilisée pour contraindre l’estimation des endmembers non seulement sur l’image d’intérêt, mais également sur les images des jours précédents. L’efficacité de cette approche bien que démontrée ici reste sujette aux limitations de résolution spatiale intrinsèques au capteur. Des expérimentations sur la fusion de donnée, à même de pouvoir améliorer la qualité des images, ont par conséquent été réalisées. Devant les limitations de ces méthodes dans le cas des capteurs multispectraux utilisés, une nouvelle approche de fusion a été proposée. Via la formulation d’un nouveau modèle et sa résolution, la fusion entre des capteurs optiques de tous types peut être réalisée sans considération de recouvrement spectral. Les différentes expérimentations sur l’estimation de cartes de neige montrent un intérêt certain d’une meilleure résolution spatiale pour isoler les zones enneigées. Ce travail montre ainsi les nouvelles possibilités de développement pour l’observation de la neige, mais également les évolutions de l’utilisation combinée des images satellites pour l’observation de la Terre en général. Note de contenu : 1- Introduction
2- Télédétection optique des surfaces enneigées
3- Le démélange spectral sur des images multispectrales
4- La fusion d’images optiques
5- Conclusions et perspectivesNuméro de notice : 25732 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal, Image, Parole, Télécoms : Grenoble : 2018 Organisme de stage : GIPSA-lab nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02157972 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94916 Simultaneous estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from multiple-satellite data / Han Ma in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
![]()
[article]
Titre : Simultaneous estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from multiple-satellite data Type de document : Article/Communication Auteurs : Han Ma, Auteur ; Giang Liu, Auteur ; Shunlin Liang, Auteur ; Zhiqiang Xiao, Auteur Année de publication : 2017 Article en page(s) : pp 43334 - 4354 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] image SPOT-Végétation
[Termes IGN] image Terra-MISR
[Termes IGN] image Terra-MODIS
[Termes IGN] indice foliaire
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de transfert radiatif
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Snow Index
[Termes IGN] photosynthèse
[Termes IGN] surveillance écologiqueRésumé : (Auteur) Leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and surface broadband albedo are three routinely generated land-surface parameters from satellite observations, which have been widely used in land-surface modeling and environmental monitoring. Currently, most global land products are retrieved separately from individual satellite data. Many issues, such as data gaps, spatial and temporal inconsistencies, and insufficient accuracy under certain conditions resulting from the inadequacies of single-sensor observations, have made the incorporation of multiple sensors a reasonable solution. In this paper, an approach to simultaneous estimation of LAI, broadband albedo, and FAPAR from multiple-satellite sensors is further refined. The method, improved from that proposed in an earlier study using Moderate Resolution Imaging Spectroradiometer (MODIS) data, consists of several steps. First, a coupled dynamic and radiative-transfer model based on MODIS, SPOT/VEGETATION, and Multiangle Imaging SpectroRadiometer data was developed to retrieve LAI values and use them to construct a time-evolving dynamic model. Second, an iteration process with predefined exit criteria was developed to obtain consistent gap-filled LAI estimates. Third, a spectral albedo based on the retrieved LAI values was simulated using a radiative-transfer model and then converted to a broadband albedo using empirical methods. Snow-covered pixels identified by normalized difference snow index thresholds were adjusted to the weighted average of the underlying albedo and the maximum snow albedo. Finally, the FAPAR of green vegetation was calculated as a combination of the albedo at the top of the canopy, the soil albedo, and the transmittance of the PAR down to the background. Validation of retrieved LAI, albedo, and FAPAR values obtained from multiple-satellite data over ten study sites has demonstrated that the proposed method can produce more accurate products than presently distributed global products. Numéro de notice : A2017-495 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691542 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2691542 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86435
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 43334 - 4354[article]Estimating fractional snow cover from MODIS using the normalized difference snow index / V.V. Salomonson in Remote sensing of environment, vol 89 n° 3 (15/02/2004)
Permalink