Descripteur
Termes descripteurs IGN > 1- Candidats > Normalized Difference Water Index
Normalized Difference Water Index |



Etendre la recherche sur niveau(x) vers le bas
Combination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Combination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia Type de document : Article/Communication Auteurs : Sanjiwana Arjasakusuma, Auteur ; Sandiaga Swahyu Kusuma, Auteur ; Raihan Rafif, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 663 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] classification et arbre de régression
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] Java (île de)
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] Normalized Difference Built-up Index
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Normalized Difference Water Index
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] rizière
[Termes descripteurs IGN] série temporelleRésumé : (auteur) The rise of Google Earth Engine, a cloud computing platform for spatial data, has unlocked seamless integration for multi-sensor and multi-temporal analysis, which is useful for the identification of land-cover classes based on their temporal characteristics. Our study aims to employ temporal patterns from monthly-median Sentinel-1 (S1) C-band synthetic aperture radar data and cloud-filled monthly spectral indices, i.e., Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), and Normalized Difference Built-up Index (NDBI), from Landsat 8 (L8) OLI for mapping rice cropland areas in the northern part of Central Java Province, Indonesia. The harmonic function was used to fill the cloud and cloud-masked values in the spectral indices from Landsat 8 data, and smile Random Forests (RF) and Classification And Regression Trees (CART) algorithms were used to map rice cropland areas using a combination of monthly S1 and monthly harmonic L8 spectral indices. An additional terrain variable, Terrain Roughness Index (TRI) from the SRTM dataset, was also included in the analysis. Our results demonstrated that RF models with 50 (RF50) and 80 (RF80) trees yielded better accuracy for mapping the extent of paddy fields, with user accuracies of 85.65% (RF50) and 85.75% (RF80), and producer accuracies of 91.63% (RF80) and 93.48% (RF50) (overall accuracies of 92.10% (RF80) and 92.47% (RF50)), respectively, while CART yielded a user accuracy of only 84.83% and a producer accuracy of 80.86%. The model variable importance in both RF50 and RF80 models showed that vertical transmit and horizontal receive (VH) polarization and harmonic-fitted NDVI were identified as the top five important variables, and the variables representing February, April, June, and December contributed more to the RF model. The detection of VH and NDVI as the top variables which contributed up to 51% of the Random Forest model indicated the importance of the multi-sensor combination for the identification of paddy fields. Numéro de notice : A2020-733 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110663 date de publication en ligne : 04/11/2020 En ligne : https://doi.org/10.3390/ijgi9110663 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96346
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 663[article]Detecting abandoned farmland using harmonic analysis and machine learning / Heeyeun Yoon in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Detecting abandoned farmland using harmonic analysis and machine learning Type de document : Article/Communication Auteurs : Heeyeun Yoon, Auteur ; Soyoun Kim, Auteur Année de publication : 2020 Article en page(s) : pp 201 - 212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse harmonique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] gestion des ressources
[Termes descripteurs IGN] inventaire
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Normalized Difference Water Index
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] production agricole
[Termes descripteurs IGN] Soil Adjusted Vegetation Index
[Termes descripteurs IGN] surface cultivéeRésumé : (auteur) It is critical to inventory abandoned farmland soon after it is generated, to better manage agricultural resources and to prevent negative consequences that would otherwise follow. This study aims to distinguish abandoned farmlands from active croplands—rice paddy and agricultural fields—by discerning the phenological trajectories over a short-term period of three years (Jan. 2016 to Dec. 2018) in Gwanyang City in South Korea. For Support Vector Machine (SVM) classification, we fully utilized parameters derived from harmonic analyses of the three vegetation indices (VIs: NDVI, NDWI, and SAVI) extracted from Sentinel-2A imagery. The harmonic analyses proved that higher-order sinusoid components produced better fitting to explain the trajectory of the VIs—the maximum adjusted was 95.23%—and the multiple VIs diversified the attributes for the classifications. Consequently, the higher-order harmonic components and the additional VIs increased the accuracy when used in SVM classification. The best performing classification was achieved with a composite of harmonic terms derived from the three VIs, yielding overall accuracy of 90.72%, Kappa index of 0.858, and user’s accuracy for abandoned farmland of 93.40%. The proposed method here would greatly improve the process of detecting abandoned farmland, despite a relatively short observation period, and enable a rapid response to the occurrence of abandonment. Numéro de notice : A2020-356 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.021 date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95243
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 201 - 212[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Using spectral indices to estimate water content and GPP in sphagnum moss and other peatland vegetation / Kirsten J. Lees in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
![]()
[article]
Titre : Using spectral indices to estimate water content and GPP in sphagnum moss and other peatland vegetation Type de document : Article/Communication Auteurs : Kirsten J. Lees, Auteur ; Rebekka R. E. Artz, Auteur ; Myroslava Khomik, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4547 - 4557 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] carbone
[Termes descripteurs IGN] Enhanced vegetation index
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] mousse
[Termes descripteurs IGN] Normalized Difference Water Index
[Termes descripteurs IGN] production primaire brute
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] service écosystémique
[Termes descripteurs IGN] signature spectrale
[Termes descripteurs IGN] stockage
[Termes descripteurs IGN] teneur en eau de la végétation
[Termes descripteurs IGN] tourbièreRésumé : (auteur) Peatlands provide important ecosystem services including carbon storage and biodiversity conservation. Remote sensing shows potential for monitoring peatlands, but most off-the-shelf data products are developed for unsaturated environments and it is unclear how well they can perform in peatland ecosystems. Sphagnum moss is an important peatland genus with specific characteristics which can affect spectral reflectance, and we hypothesized that the prevalence of Sphagnum in a peatland could affect the spectral signature of the area. This article combines results from both laboratory and field experiments to assess the relationship between spectral indices and the moisture content and gross primary productivity (GPP) of peatland (blanket bog) vegetation species. The aim was to consider how well the selected indices perform under a range of conditions, and whether Sphagnum has a significant impact on the relationships tested. We found that both water indices tested [normalized difference water index (NDWI) and floating water band index (fWBI)] were sensitive to the water content changes in Sphagnum moss in the laboratory, and there was little difference between them. Most of the vegetation indices tested [the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), structure insensitive pigment index (SIPI), and chlorophyll index (CIm)] were found to have a strong relationship with GPP both in the laboratory and in the field. The NDVI and EVI are useful for large-scale estimation of GPP, but are sensitive to the proportion of Sphagnum present. The CIm is less affected by different species proportions and might therefore be the best to use in areas where vegetation species cover is unknown. The photochemical reflectance index (PRI) is shown to be best suited to small-scale studies of single species. Numéro de notice : A2020-378 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2961479 date de publication en ligne : 27/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2961479 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95371
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4547 - 4557[article]Coastline change modelling induced by climate change using geospatial techniques in Togo (West Africa) / Yawo Konko in Advances in Remote Sensing, vol 9 n° 2 (June 2020)
![]()
[article]
Titre : Coastline change modelling induced by climate change using geospatial techniques in Togo (West Africa) Type de document : Article/Communication Auteurs : Yawo Konko, Auteur ; Appollonia Okhimambe, Auteur ; Pouwèréou Nimon, Auteur ; Jerry Asaana, Auteur ; Jean-Paul Rudant , Auteur ; Kouami Kokou, Auteur
Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : pp 85 - 100 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données multisources
[Termes descripteurs IGN] érosion côtière
[Termes descripteurs IGN] image Landsat-ETM+
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] niveau de la mer
[Termes descripteurs IGN] Normalized Difference Water Index
[Termes descripteurs IGN] outil d'aide à la décision
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance du littoral
[Termes descripteurs IGN] Togo
[Termes descripteurs IGN] trait de côteRésumé : (auteur) Climate change is a major concern of humanity. One of the consequences of climate change is global warming causing melting glaciers, rising sea levels and shoreline regression. In Togo, the regression of shoreline leads to coastal erosion with significant damage on socio-economic infrastructures and human habitats. This research, basing on geospatial techniques, focuses on coastal erosion monitoring from 1988 to 2018 in Togo. It is interested in the extraction of shoreline and in the analysis of change. Various satellite images indexes have been developed for shoreline extraction but the major scientific problem concerns the precision of the different classification algorithms methods used for the extraction of the shoreline from these water index. This study used NDWI index from multisource satellite images. It assesses the performance of Otsu threshold segmentation, Iso Cluster Unsupervised Classification and Support Vector Machine (SVM) Supervised Classification methods for the extraction of the shoreline on NDWI index. The topographic morphology such as linear and non-linear coastal surfaces have been considered. The estimation of the rates of change of the shoreline was performed using the statistical linear regression method (LRR). The results revealed that the SVM Supervised Classification method showed good performance on linear and non-linear coastal surface than the other methods. For the kinematics of the shoreline, the southwest of the Togolese coast has an average erosion rate ranging from 2.49 to 5.07 m per year. The results obtained will serve as decision-making support tools for the design and implementation of appropriate adaptations plans to avoid the immersion of the asphalt road by sea, displacement of population and disturbance of human habitats. Numéro de notice : A2020-795 Affiliation des auteurs : UGE-LaSTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.4236/ars.2020.92005 date de publication en ligne : 08/06/2020 En ligne : https://doi.org/10.4236/ars.2020.92005 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96622
in Advances in Remote Sensing > vol 9 n° 2 (June 2020) . - pp 85 - 100[article]Object-based automatic multi-index built-up areas extraction method for WorldView-2 satellite imagery / Zhenhui Sun in Geocarto international, Vol 35 n° 8 ([01/06/2020])
![]()
[article]
Titre : Object-based automatic multi-index built-up areas extraction method for WorldView-2 satellite imagery Type de document : Article/Communication Auteurs : Zhenhui Sun, Auteur ; Qingyan Meng, Auteur Année de publication : 2020 Article en page(s) : pp 801 - 817 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Normalized Difference Water Index
[Termes descripteurs IGN] optimisation par essaim de particules
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) The WorldView-2 high spatial resolution satellite with eight multispectral imaging bands is ideally suited for extracting built-up areas (BUs) from remote sensing images. In this study, an object-based automatic multi-index BUs extraction method was developed. First, several indices, including BUs extraction index (NBEIr-c), vegetation extraction index(NDVInir2-r) and water extraction index (NDWI b-nir1), were developed to obtain the BUs, vegetation and water maps, and then the fractional-order Darwinian particle swarm optimization (FODPSO) algorithm was employed to automatically segment the multi-index images and obtained BUs, water, vegetation and bare soil (BS) information. Finally, the extracted BUs results were optimized via an object-based analysis method and the results were compared with those of two other relevant indices, which confirmed the proposed method had a higher accuracy and exhibited higher performance when separating the BS from the BUs. Numéro de notice : A2020-273 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1544290 date de publication en ligne : 07/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1544290 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95058
in Geocarto international > Vol 35 n° 8 [01/06/2020] . - pp 801 - 817[article]A water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])
PermalinkA LiDAR–optical data fusion approach for identifying and measuring small stream impoundments and dams / Benjamin Swan in Transactions in GIS, Vol 24 n° 1 (February 2020)
PermalinkNational scale identification and characterization of braided rivers in New Zealand using Google Earth Engine / Alexis Jean (2020)
PermalinkComparative analysis of the accuracy of surface soil moisture estimation from the C- and L-bands / Mohammad El Hajj in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
PermalinkClassification of glacial lakes using integrated approach of DFPS technique and gradient analysis using Sentinel 2A data / Prateek Verma in Geocarto international, vol 34 n° 10 ([15/07/2019])
PermalinkSynergie des données Sentinel optiques et radar pour l’observation et l’analyse de la végétation du littoral du Pays de Brest / Antoine Billey (2018)
PermalinkReconstruction of time-varying tidal flat topography using optical remote sensing imageries / Kuo-Hsin Tseng in ISPRS Journal of photogrammetry and remote sensing, vol 131 (September 2017)
PermalinkPan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents / Khan Rubayet Rahaman in ISPRS International journal of geo-information, vol 6 n° 6 (June 2017)
PermalinkObject-based water body extraction model using Sentinel-2 satellite imagery / Gordana Kaplan in European journal of remote sensing, vol 50 n° 1 (2017)
PermalinkPermalink