Descripteur
Termes IGN > informatique > base de données > base de données orientée objet > base de données d'objets mobiles > objet mobile
objet mobileSynonyme(s)objet en mouvement |
Documents disponibles dans cette catégorie (158)



Etendre la recherche sur niveau(x) vers le bas
Assessing the cognition of movement trajectory visualizations: interpreting speed and direction / Crystal J. Bae in Cartography and Geographic Information Science, Vol 50 n° 2 (March 2023)
![]()
[article]
Titre : Assessing the cognition of movement trajectory visualizations: interpreting speed and direction Type de document : Article/Communication Auteurs : Crystal J. Bae, Auteur ; Somayeh Dodge, Auteur Année de publication : 2023 Article en page(s) : pp 143 - 161 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse visuelle
[Termes IGN] cognition
[Termes IGN] compréhension de l'image
[Termes IGN] données spatiotemporelles
[Termes IGN] objet mobile
[Termes IGN] visualisation cartographique
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) This paper evaluates cognitively plausible geovisualization techniques for mapping movement data. With the widespread increase in the availability and quality of space-time data capturing movement trajectories of individuals, meaningful representations are needed to properly visualize and communicate trajectory data and complex movement patterns using geographic displays. Many visualization and visual analytics approaches have been proposed to map movement trajectories (e.g. space-time paths, animations, trajectory lines, etc.). However, little is known about how effective these complex visualizations are in capturing important aspects of movement data. Given the complexity of movement data which involves space, time, and context dimensions, it is essential to evaluate the communicative efficiency and efficacy of various visualization forms in helping people understand movement data. This study assesses the effectiveness of static and dynamic movement displays as well as visual variables in communicating movement parameters along trajectories, such as speed and direction. To do so, a web-based survey is conducted to evaluate the understanding of movement visualizations by a nonspecialist audience. This and future studies contribute fundamental insights into the cognition of movement visualizations and inspire new methods for the empirical evaluation of geovisualizations. Numéro de notice : A2023-221 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2022.2157879 Date de publication en ligne : 23/01/2023 En ligne : https://doi.org/10.1080/15230406.2022.2157879 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103167
in Cartography and Geographic Information Science > Vol 50 n° 2 (March 2023) . - pp 143 - 161[article]Interactive visual analytics of moving passenger flocks using massive smart card data / Tong Zhang in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
![]()
[article]
Titre : Interactive visual analytics of moving passenger flocks using massive smart card data Type de document : Article/Communication Auteurs : Tong Zhang, Auteur ; Wei He, Auteur ; Jing Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 354 - 369 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse spatiale
[Termes IGN] analyse visuelle
[Termes IGN] carte à puce
[Termes IGN] données massives
[Termes IGN] mobilité urbaine
[Termes IGN] objet mobile
[Termes IGN] Shenzhen
[Termes IGN] trajet (mobilité)
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Understanding urban mobility patterns is constrained by our limited capabilities to extract and visualize spatio-temporal regularities from large amounts of mobility data. Moving flocks, defined as groups of people traveling along over a pre-defined time duration, can reveal collective moving patterns at aggregated spatio-temporal scales, thereby facilitating the discovery of urban mobility structure and travel demand patterns. In this study, we extend classical trajectory-oriented flock mining algorithms to discover moving flocks of transit passengers, accounting for the constraints of multi-modal transit networks. We develop a map-centered visual analytics approach by integrating the flock mining algorithm with interactive visualization designs of discovered flocks. Novel interactive visualizations are designed and implemented to support the exploration and analyses of discovered moving flocks at different spatial and temporal scales. The visual analytics approach is evaluated using a real-world smart card dataset collected in Shenzhen City, China, validating its applicability in capturing and mapping dynamic mobility patterns over a large metropolitan area. Numéro de notice : A2022-480 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2022.2039775 Date de publication en ligne : 09/03/2022 En ligne : https://doi.org/10.1080/15230406.2022.2039775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100886
in Cartography and Geographic Information Science > Vol 49 n° 4 (July 2022) . - pp 354 - 369[article]Modeling human–human interaction with attention-based high-order GCN for trajectory prediction / Yanyan Fang in The Visual Computer, vol 38 n° 7 (July 2022)
![]()
[article]
Titre : Modeling human–human interaction with attention-based high-order GCN for trajectory prediction Type de document : Article/Communication Auteurs : Yanyan Fang, Auteur ; Zhiyu Jin, Auteur ; Zhenhua Cui, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2257 - 2269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection de cible
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] interaction spatiale
[Termes IGN] modèle de simulation
[Termes IGN] objet mobile
[Termes IGN] piéton
[Termes IGN] réseau neuronal de graphes
[Termes IGN] trajet (mobilité)Résumé : (auteur) This paper presents a novel high-order graph convolutional network (GCN) for pedestrian trajectory prediction. Specifically, the walking state of a target pedestrian depends on both its historical trajectory, which encodes its speed, walking direction and acceleration information, as well as the movement of its neighbors. Thus we propose to leverage GCNs to aggregate the trajectory features of the target pedestrian and its neighbors to predict the movement of the target pedestrian. Considering that the movement of the neighbors’ neighbors affects the movement of the target pedestrian’s neighbors, thus indirectly affecting the movement of the target pedestrian, we propose to use a high-order GCN for human–human interaction modelling. Such a high-order GCN considers the target pedestrian’s neighbors as well as its neighbors’ neighbors. Further, a pedestrian avoids collision with others by estimating its locations and its neighbors’ upcoming locations, and it slows down or changes direction if it believes a collision may occur, especially in very crowded scenes. In light of this, we propose to model such anticipation-based decision making behavior as attention and combine it with our high-order GCN. Thus we first roughly estimate the future trajectories of all pedestrians with a simple method. By using the coarse predicted future trajectory and GCN outputs, we calculate the attention in our attention-based high-order GCN and predict future trajectory. Extensive experiments validate the effectiveness of our approach. In addition, our model shows a higher data efficiency. On the ETH&UCY dataset, using only 5% of the training data for each training epoch, our model outperforms the state of the art. Numéro de notice : A2022-507 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02109-2 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02109-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101040
in The Visual Computer > vol 38 n° 7 (July 2022) . - pp 2257 - 2269[article]The point-descriptor-precedence representation for point configurations and movements / Amna Qayyum in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
![]()
[article]
Titre : The point-descriptor-precedence representation for point configurations and movements Type de document : Article/Communication Auteurs : Amna Qayyum, Auteur ; Bernard De Baets, Auteur ; Muhammad Sulman Baig, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1374 - 1391 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] courbe
[Termes IGN] détection d'événement
[Termes IGN] données spatiotemporelles
[Termes IGN] mesurage de distances
[Termes IGN] objet mobile
[Termes IGN] reconnaissance de formes
[Termes IGN] relation topologique
[Termes IGN] trafic routier
[Termes IGN] véhicule automobileRésumé : (auteur) In this paper, we represent (moving) point configurations along a curved directed line qualitatively by means of a system of relational symbols based on two distance descriptors: one representing distance along the curved directed line and the other representing signed orthogonal distance to the curved directed line. The curved directed line represents the direction of the movement of interest. For instance, it could be straight as in the case of driving along a highway or could be curved as in the case of an intersection or a roundabout. Inspired by the Point Calculus, the order between the points on the curved directed line is described by means of a small set of binary relations () acting upon the distance descriptors. We call this representation the Point-Descriptor-Precedence-Static (PDPS) representation at a time point and Point-Descriptor-Precedence-Dynamic (PDPD) representation during a time interval. To illustrate how the proposed approach can be used to represent and analyse curved movements, some basic micro-analysis traffic examples are studied. Finally, we discuss some extensions of our work to highlight the practical benefits of PDP in identifying motion patterns that could be useful in GIS, autonomous vehicles, sports analytics, and gait analysis. Numéro de notice : A2021-453 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1864378 Date de publication en ligne : 11/01/2021 En ligne : https://doi.org/10.1080/13658816.2020.1864378 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97882
in International journal of geographical information science IJGIS > vol 35 n° 7 (July 2021) . - pp 1374 - 1391[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021071 SL Revue Centre de documentation Revues en salle Disponible Trajectory and image-based detection and identification of UAV / Yicheng Liu in The Visual Computer, vol 37 n° 7 (July 2021)
![]()
[article]
Titre : Trajectory and image-based detection and identification of UAV Type de document : Article/Communication Auteurs : Yicheng Liu, Auteur ; Luchuan Liao, Auteur ; Hao Wu, Auteur ; et al., Auteur Année de publication : 2021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] Aves
[Termes IGN] caméra de surveillance PTZ
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] drone
[Termes IGN] forme caractéristique
[Termes IGN] interférence
[Termes IGN] objet mobile
[Termes IGN] reconnaissance de formes
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) Much more attentions have been attracted to the inspection and prevention of unmanned aerial vehicle (UAV) in the wake of increasing high frequency of security accident. Many factors like the interferences and the small fuselage of UAV pose challenges to the timely detection of the UAV. In our work, we present a system that is capable of detecting, recognizing, and tracking an UAV using single camera automatically. For our method, a single pan–tilt–zoom (PTZ) camera detects flying objects and gets their trajectories; then, the trajectory identified as a UAV guides the camera and PTZ to capture the detailed region image of the target. Therefore, the images can be classified into the UAV and interference classes (such as birds) by the convolution neural network classifier trained with our image dataset. For the target recognized as a UAV with the double verification, the radio jammer emits the interferential radio to disturb its control radio and GPS. This system could be applied in some complex environment where many birds and UAV appear simultaneously. Numéro de notice : A2021-541 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01937-y Date de publication en ligne : 29/07/2020 En ligne : https://doi.org/10.1007/s00371-020-01937-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98020
in The Visual Computer > vol 37 n° 7 (July 2021)[article]Dynamic human body reconstruction and motion tracking with low-cost depth cameras / Kangkan Wang in The Visual Computer, vol 37 n° 3 (March 2021)
PermalinkLightweight convolutional neural network-based pedestrian detection and re-identification in multiple scenarios / Xiao Ke in Machine Vision and Applications, vol 32 n° 2 (March 2021)
PermalinkPassive radar imaging of ship targets with GNSS signals of opportunity / Debora Pastina in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkActivity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)
PermalinkUnsupervised deep representation learning for real-time tracking / Ning Wang in International journal of computer vision, vol 129 n° 2 (February 2021)
PermalinkIntroducing diversion graph for real-time spatial data analysis with location based social networks / Sameera Kannangara (2021)
PermalinkGroup diagrams for representing trajectories / Maike Buchin in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkSemantic trajectory segmentation based on change-point detection and ontology / Yuan Gao in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkA framework for group converging pattern mining using spatiotemporal trajectories / Bin Zhao in Geoinformatica, vol 24 n° 4 (October 2020)
PermalinkIncorporating behavior into animal movement modeling: a constrained agent-based model for estimating visit probabilities in space-time prisms / Rebecca W. Loraamm in International journal of geographical information science IJGIS, vol 34 n° 8 (August 2020)
Permalink