Descripteur



Etendre la recherche sur niveau(x) vers le bas
Activity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)
![]()
[article]
Titre : Activity recognition in residential spaces with Internet of things devices and thermal imaging Type de document : Article/Communication Auteurs : Kshirasagar Naik, Auteur ; Tejas Pandit, Auteur ; Nitin Naik, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] compréhension de l'image
[Termes descripteurs IGN] contrôle par télédétection
[Termes descripteurs IGN] détection d'événement
[Termes descripteurs IGN] espace intérieur
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] intelligence artificielle
[Termes descripteurs IGN] internet des objets
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] modèle stéréoscopique
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] reconnaissance automatique
[Termes descripteurs IGN] reconnaissance d'objets
[Termes descripteurs IGN] scène 3DRésumé : (auteur) In this paper, we design algorithms for indoor activity recognition and 3D thermal model generation using thermal images, RGB images, captured from external sensors, and the internet of things setup. Indoor activity recognition deals with two sub-problems: Human activity and household activity recognition. Household activity recognition includes the recognition of electrical appliances and their heat radiation with the help of thermal images. A FLIR ONE PRO camera is used to capture RGB-thermal image pairs for a scene. Duration and pattern of activities are also determined using an iterative algorithm, to explore kitchen safety situations. For more accurate monitoring of hazardous events such as stove gas leakage, a 3D reconstruction approach is proposed to determine the temperature of all points in the 3D space of a scene. The 3D thermal model is obtained using the stereo RGB and thermal images for a particular scene. Accurate results are observed for activity detection, and a significant improvement in the temperature estimation is recorded in the 3D thermal model compared to the 2D thermal image. Results from this research can find applications in home automation, heat automation in smart homes, and energy management in residential spaces. Numéro de notice : A2021-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21030988 date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.3390/s21030988 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97075
in Sensors > vol 21 n° 3 (February 2021) . - n° 988[article]Group diagrams for representing trajectories / Maike Buchin in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
![]()
[article]
Titre : Group diagrams for representing trajectories Type de document : Article/Communication Auteurs : Maike Buchin, Auteur ; Bernhard Kilgus, Auteur ; Andrea Kölzsch, Auteur Année de publication : 2020 Article en page(s) : pp 2401 - 2433 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] approximation
[Termes descripteurs IGN] diagramme
[Termes descripteurs IGN] distance de Fréchet
[Termes descripteurs IGN] données GPS
[Termes descripteurs IGN] géomètrie algorithmique
[Termes descripteurs IGN] itinéraire
[Termes descripteurs IGN] migration animale
[Termes descripteurs IGN] mouvement
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] trajectoireRésumé : (auteur) Given the trajectories of one or several moving groups, we propose a new framework, the group diagram (GD) for representing these. Specifically, we seek a minimal GD as a concise representation of the groups maintaining the spatio-temporal structure of the groups’ movement. A GD is specified by three input values, namely a distance threshold, a similarity measure and a minimality criterion. For several variants of the GD, we give a comprehensive analysis of their computational complexity and present efficient approximation algorithms for their computation. Furthermore, we experimentally evaluate our algorithms on GPS data of migrating geese. Applying the proposed methods on these data sets reveals how the GD concisely represents the movement of the groups. This representation can be used for further analysis and for the formulation of new hypotheses for further ecological research, such as differences in movement patterns of groups on different surfaces or the shift of migration routes over several years. We use different similarity measures to summarize the migration routes of (i) a goose family for one migration period and to summarize (ii) the migration routes of one individual for several migration periods or (iii) the migration routes of several independent individuals for one migration period. Numéro de notice : A2020-690 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1684498 date de publication en ligne : 25/11/2019 En ligne : https://doi.org/10.1080/13658816.2019.1684498 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96227
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2401 - 2433[article]Semantic trajectory segmentation based on change-point detection and ontology / Yuan Gao in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
![]()
[article]
Titre : Semantic trajectory segmentation based on change-point detection and ontology Type de document : Article/Communication Auteurs : Yuan Gao, Auteur ; Longfei Huang, Auteur ; Jun Feng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2361 - 2394 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cible mobile
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] information sémantique
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] ontologie
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] probabilité
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] trajectoireRésumé : (auteur) Trajectory segmentation is a fundamental issue in GPS trajectory analytics. The task of dividing a raw trajectory into reasonable sub-trajectories and annotating them based on moving subject’s intentions and application domains remains a challenge. This is due to the highly dynamic nature of individuals’ patterns of movement and the complex relationships between such patterns and surrounding points of interest. In this paper, we present a framework called SEMANTIC-SEG for automatic semantic segmentation of trajectories from GPS readings. For the decomposition component of SEMANTIC-SEG, a moving pattern change detection (MPCD) algorithm is proposed to divide the raw trajectory into segments that are homogeneous in their movement conditions. A generic ontology and a spatiotemporal probability model for segmentation are then introduced to implement a bottom-up ontology-based reasoning for semantic enrichment. The experimental results on three real-world datasets show that MPCD can more effectively identify the semantically significant change-points in a pattern of movement than four existing baseline methods. Moreover, experiments are conducted to demonstrate how the proposed SEMANTIC-SEG framework can be applied. Numéro de notice : A2020-689 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1798966 date de publication en ligne : 04/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1798966 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96226
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2361 - 2394[article]A framework for group converging pattern mining using spatiotemporal trajectories / Bin Zhao in Geoinformatica [en ligne], vol 24 n° 4 (October 2020)
![]()
[article]
Titre : A framework for group converging pattern mining using spatiotemporal trajectories Type de document : Article/Communication Auteurs : Bin Zhao, Auteur ; Xintao Liu, Auteur ; Jinping Jia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 745 - 776 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] base de données spatiotemporelles
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] convergence
[Termes descripteurs IGN] exploration de données géographiques
[Termes descripteurs IGN] jointure spatiale
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] reconnaissance de formes
[Termes descripteurs IGN] trajectoireRésumé : (Auteur) A group event such as human and traffic congestion can be very roughly divided into three stages: converging stage before congestion, gathered stage when congestion happens, and dispersing stage that congestion disappears. It is of great interest in modeling and identifying converging behaviors before gathered events actually happen, which helps to proactively predict and handle potential public incidents such as serious stampedes. However, most of existing literature put too much emphasis on the second stage, only a few of them is dedicated to the first stage. In this paper, we propose a novel group pattern, namely converging, which refers to a group of moving objects converging from different directions during a certain period before gathered. To discover efficiently such converging patterns, we develop a framework for converging pattern mining (CPM) by examining how moving objects form clusters and the process of the “cluster containment”. The framework consists of three phases: snapshot cluster discovery phase, cluster containment join phase, and converging detection phase. As cluster containment mining is the key step, we develop three algorithms to discover cluster containment matches: a containment-join-algorithm, called SSCCJ, by using spatial proximity; a signature tree-based cluster-containment-join-algorithm, called STCCJ, which takes advantage of the cluster containment relations and signature techniques to filter enormous unqualified candidates in an efficient and effective way; and third, to keep the advantages of the above algorithms while avoiding their flaws, we further propose a signature quad-tree based cluster-containment-join algorithm, called SQTCCJ, which can identify efficiently matches by considering cluster spatial proximity as well as containment relations simultaneously. To assess the proposed methods, we redefine two evaluation metrics based on the concept of “Precision and Recall” in the field of information retrieval and the characteristics of converging patterns. We also propose a new indicator for measuring the duration of the converging stage in a group event. Finally, the effectiveness of the CPM and the efficiency of the mining algorithms are evaluated using three types of trajectory datasets, and the results show that the SQTCCJ algorithm demonstrates a superior performance. Numéro de notice : A2020-494 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00404-z date de publication en ligne : 25/04/2020 En ligne : https://doi.org/10.1007/s10707-020-00404-z Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96114
in Geoinformatica [en ligne] > vol 24 n° 4 (October 2020) . - pp 745 - 776[article]Incorporating behavior into animal movement modeling: a constrained agent-based model for estimating visit probabilities in space-time prisms / Rebecca W. Loraamm in International journal of geographical information science IJGIS, vol 34 n° 8 (August 2020)
![]()
[article]
Titre : Incorporating behavior into animal movement modeling: a constrained agent-based model for estimating visit probabilities in space-time prisms Type de document : Article/Communication Auteurs : Rebecca W. Loraamm, Auteur Année de publication : 2020 Article en page(s) : pp 1607 - 1627 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] migration animale
[Termes descripteurs IGN] modèle orienté agent
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] prisme spatio-temporel
[Termes descripteurs IGN] système multi-agents
[Termes descripteurs IGN] Time-geographyRésumé : (auteur) Animal movement is a dynamic spatio-temporal process. While trajectory data reflect the instantaneous animal position in space and time, other factors influence movement decisions between these observed positions. While some methods incorporate environmental (habitat) context into their understanding of the animal movement process, it is often captured in terms of simple parameters or weights influencing model results; primary behavioral data are not used directly to inform these models. Here, a new space-time constrained agent-based model is introduced, capable of producing ordered, behaviorally informed animal potential paths between observed space-time anchors. Potential paths generated by this approach incorporate both observed animal behavior and classical space-time constraints, and are used to construct associated visit probability distributions. Additionally, the notion of a behavioral space-time path is introduced, a variant of the space-time path based on the results of behaviorally aware animal movement simulation. The results of this approach demonstrate a means to better understand the varied movement opportunities within space-time prisms from an animal behavior perspective. From a spatial ecology perspective, not only is the environmental context considered, but the animal’s choice of transition and movement magnitude between contexts is modeled. This approach provides insight into the complex sequence of behaviorally informed actions driving animal movement decision-making. Numéro de notice : A2020-409 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1658875 date de publication en ligne : 11/09/2019 En ligne : https://doi.org/10.1080/13658816.2019.1658875 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95466
in International journal of geographical information science IJGIS > vol 34 n° 8 (August 2020) . - pp 1607 - 1627[article]An empirical study on the intra-urban goods movement patterns using logistics big data / Pengxiang Zhao in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
PermalinkUber movement data: a proxy for average one-way commuting times by car / Yeran Sun in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
PermalinkPermalinkMoving objects aware sensor mesh fusion for indoor reconstruction from a couple of 2D lidar scans / Teng Wu (2020)
PermalinkA polyhedra-based model for moving regions in databases / Florian Heinz in International journal of geographical information science IJGIS, vol 34 n° 1 (January 2020)
PermalinkScene context-driven vehicle detection in high-resolution aerial images / Chao Tao in IEEE Transactions on geoscience and remote sensing, Vol 57 n° 10 (October 2019)
PermalinkSMSM: a similarity measure for trajectory stops and moves / Andre L. Lehmann in International journal of geographical information science IJGIS, vol 33 n° 9 (September 2019)
PermalinkRelative space-based GIS data model to analyze the group dynamics of moving objects / Mingxiang Feng in ISPRS Journal of photogrammetry and remote sensing, vol 153 (July 2019)
PermalinkPatch-based detection of dynamic objects in CrowdCam images / Gagan Kanojia in The Visual Computer, vol 35 n° 4 (April 2019)
PermalinkLearning to segment moving objects / Pavel Tokmakov in International journal of computer vision, vol 127 n° 3 (March 2019)
Permalink