Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage dirigé > arbre de décision > octree
octreeSynonyme(s)arbre octaireVoir aussi |
Documents disponibles dans cette catégorie (17)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
An adaptive filtering algorithm of multilevel resolution point cloud / Youyuan Li in Survey review, Vol 53 n° 379 (July 2021)
[article]
Titre : An adaptive filtering algorithm of multilevel resolution point cloud Type de document : Article/Communication Auteurs : Youyuan Li, Auteur ; Jian Wang, Auteur ; Bin Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 300 - 311 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de filtrage
[Termes IGN] analyse multirésolution
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] données lidar
[Termes IGN] filtrage de points
[Termes IGN] filtre adaptatif
[Termes IGN] interpolation spatiale
[Termes IGN] Kappa de Cohen
[Termes IGN] octree
[Termes IGN] pente
[Termes IGN] semis de points
[Termes IGN] seuillage de pointsRésumé : (auteur) The existing filtering methods for airborne LiDAR point cloud have low accuracy. An adaptive filtering algorithm is proposed which is improved based on multilevel resolution algorithm. First double index structure of Octree and KDtree is established. Then the initial reference surface is constructed by ground seed points. According to the slope fluctuation situation, the grid resolution of the ground referential surface is adjusted in an adaptive way. Finally, the refined surface is formed gradually by multilevel renewing resolution to provide filtered point cloud with high accuracy. Experimental results show that the error of Type II can be effectively reduced, the average Kappa coefficient increases by 0.53% and the average total error decreases by 0.44% compared with multiresolution hierarchical classification algorithm. The result tested by practically measured data shows that Kappa coefficient can reach 90%. Especially, it maintains advantages of high accuracy under complex topographic environment. Numéro de notice : A2021-544 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2020.1755163 Date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1080/00396265.2020.1755163 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98042
in Survey review > Vol 53 n° 379 (July 2021) . - pp 300 - 311[article]Extraction of street pole-like objects based on plane filtering from mobile LiDAR data / Jingming Tu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
[article]
Titre : Extraction of street pole-like objects based on plane filtering from mobile LiDAR data Type de document : Article/Communication Auteurs : Jingming Tu, Auteur ; Jian Yao, Auteur ; Li Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 749 - 768 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte routière
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forme caractéristique
[Termes IGN] méthode robuste
[Termes IGN] octree
[Termes IGN] réseau routierRésumé : (auteur) Pole-like objects provide important street infrastructure for road inventory and road mapping. In this article, we proposed a novel pole-like object extraction algorithm based on plane filtering from mobile Light Detection and Ranging (LiDAR) data. The proposed approach is composed of two parts. In the first part, a novel octree-based split scheme was proposed to fit initial planes from off-ground points. The results of the plane fitting contribute to the extraction of pole-like objects. In the second part, we proposed a novel method of pole-like object extraction by plane filtering based on local geometric feature restriction and isolation detection. The proposed approach is a new solution for detecting pole-like objects from mobile LiDAR data. The innovation in this article is that we assumed that each of the pole-like objects can be represented by a plane. Thus, the essence of extracting pole-like objects will be converted to plane selecting problem. The proposed method has been tested on three data sets captured from different scenes. The average completeness, correctness, and quality of our approach can reach up to 87.66%, 88.81%, and 79.03%, which is superior to state-of-the-art approaches. The experimental results indicate that our approach can extract pole-like objects robustly and efficiently. Numéro de notice : A2021-042 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2993454 Date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2993454 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96758
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 749 - 768[article]
Titre : LiDAR-based point clouds registration for localization in indoor environments Type de document : Thèse/HDR Auteurs : Ketty Favre, Auteur ; Luce Morin, Directeur de thèse ; Eric Marchand, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2021 Importance : 146 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université Rennes 1, Spécialité Signal, Image, VisionLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de Gauss-Newton
[Termes IGN] appariement d'images
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace intérieur
[Termes IGN] octree
[Termes IGN] Ransac (algorithme)
[Termes IGN] recalage de données localisées
[Termes IGN] scène intérieure
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesIndex. décimale : THESE Thèses et HDR Résumé : (auteur) This thesis deals with the problem of registration of 3D point clouds in indoor environments. Registration methods are proposed to obtain a compromise between time and accuracy. First, GNMR-ICP, a multi-resolution algorithm which robustly minimizes the point-to-plane distance between two point clouds using a Gauss-Newton method. The multi-resolution is done using an octree. On the ASL benchmark dataset, GNMR-ICP gives more accurate results than its equivalent using the small angle approximation (81% success rate against 43%). Computation times in structured environments are reduced (up to a factor of 2). Next we present NAP-ICP, an algorithm based on plane matching. Planes are matched using a score function based on the characteristics of pairs of planes. An additional point-to-plane registration is performed to ensure maximum accuracy. NAP-ICP registers 100% of the interior scenes of the ASL dataset and is more accurate than the evaluated state-of-the-art functions and is able to close the loops of the LOOP’IN dataset. Finally, PAR-ICP, a plane-based method where the matching is performed using a Random Forest is presented. PAR-ICP registers 100% of the interior scenes of the ASL dataset and is able to close the loops of LOOP’IN, allowing to generate incremental maps. Note de contenu : Introduction
1- Background
2- State of the art
3- Datasets
4- Multi-resolution registration of 3D point clouds
5- Plane-based registration of 3D point clouds
6- Learning-based plane matching for planet-to-plane
ConclusionNuméro de notice : 28635 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal, Image, Vision : Rennes 1 : 2021 Organisme de stage : Institut d'Électronique et de Télécommunications DOI : sans En ligne : http://www.theses.fr/2021REN1S059 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99666 Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets / Yusheng Xu in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets Type de document : Article/Communication Auteurs : Yusheng Xu, Auteur ; Richard Boerner, Auteur ; Wei Yao, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 106 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement d'images
[Termes IGN] congruence
[Termes IGN] données 4D
[Termes IGN] données lidar
[Termes IGN] données spatiotemporelles
[Termes IGN] modèle stéréoscopique
[Termes IGN] octree
[Termes IGN] Ransac (algorithme)
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] surface plane
[Termes IGN] voxelRésumé : (Auteur) To ensure complete coverage when measuring a large-scale urban area, pairwise registration between point clouds acquired via terrestrial laser scanning or stereo image matching is usually necessary when there is insufficient georeferencing information from additional GNSS and INS sensors. In this paper, we propose a semi-automatic and target-less method for coarse registration of point clouds using geometric constraints of voxel-based 4-plane congruent sets (V4PCS). The planar patches are firstly extracted from voxelized point clouds. Then, the transformation invariant, 4-plane congruent sets are constructed from extracted planar surfaces in each point cloud. Initial transformation parameters between point clouds are estimated via corresponding congruent sets having the highest registration scores in the RANSAC process. Finally, a closed-form solution is performed to achieve optimized transformation parameters by finding all corresponding planar patches using the initial transformation parameters. Experimental results reveal that our proposed method can be effective for registering point clouds acquired from various scenes. A success rate of better than 80% was achieved, with average rotation errors of about 0.5 degrees and average translation errors less than approximately 0.6 m. In addition, our proposed method is more efficient than other baseline methods when using the same hardware and software configuration conditions. Numéro de notice : A2019-207 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.02.015 Date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.02.015 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92673
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 106 - 123[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A derivative-free optimization-based approach for detecting architectural symmetries from 3D point clouds / Fan Xue in ISPRS Journal of photogrammetry and remote sensing, vol 148 (February 2019)
[article]
Titre : A derivative-free optimization-based approach for detecting architectural symmetries from 3D point clouds Type de document : Article/Communication Auteurs : Fan Xue, Auteur ; Weisheng Lu, Auteur ; Christopher J. Webster, Auteur ; Ke Chen, Auteur Année de publication : 2019 Article en page(s) : pp 32 - 40 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] méthode robuste
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] octree
[Termes IGN] programmation non linéaire
[Termes IGN] semis de pointsRésumé : (Auteur) Symmetry is ubiquitous in architecture, across both time and place. Automated architectural symmetry detection (ASD) from a data source is not only an intriguing inquiry in its own right, but also a step towards creation of semantically rich building and city information models with applications in architectural design, construction management, heritage conservation, and smart city development. While recent advances in sensing technologies provide inexpensive yet high-quality architectural 3D point clouds, existing methods of ASD from these data sources suffer several weaknesses including noise sensitivity, inaccuracy, and high computational loads. This paper aims to develop a novel derivative-free optimization (DFO)-based approach for effective ASD. It does so by firstly transforming ASD into a nonlinear optimization problem involving architectural regularity and topology. An in-house ODAS (Optimization-based Detection of Architectural Symmetries) approach is then developed to solve the formulated problem using a set of state-of-the-art DFO algorithms. Efficiency, accuracy, and robustness of ODAS are gauged from the experimental results on nine sets of real-life architectural 3D point clouds, with the computational time for ASD from 1.4 million points only 3.7 s and increasing in a sheer logarithmic order against the number of points. The contributions of this paper are threefold. Firstly, formulating ASD as a nonlinear optimization problem constitutes a methodological innovation. Secondly, the provision of up-to-date, open source DFO algorithms allows benchmarking in the future development of free, fast, accurate, and robust approaches for ASD. Thirdly, the ODAS approach can be directly used to develop building and city information models for various value-added applications. Numéro de notice : A2019-070 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.12.005 Date de publication en ligne : 18/12/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.12.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92157
in ISPRS Journal of photogrammetry and remote sensing > vol 148 (February 2019) . - pp 32 - 40[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A voxel- and graph-based strategy for segmenting man-made infrastructures using perceptual grouping laws: comparison and evaluation / Yusheng Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 6 (juin 2018)PermalinkA spatio-temporal index for aerial full waveform laser scanning data / Debra F. Laefer in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)PermalinkSemantic enrichment of octree structured point clouds for multi‐story 3D pathfinding / Florian W. Fichtner in Transactions in GIS, vol 22 n° 1 (February 2018)PermalinkGlobal, dense multiscale reconstruction for a billion points / Benjamin Ummenhofer in International journal of computer vision, vol 125 n° 1-3 (December 2017)PermalinkEtude et méthodes d'intégration et d'interaction de données 3D complexes type "nuages de points" vers un web SIG / Victor Lambert (2017)PermalinkProject pointless : pathfinding through identified empty space in point clouds / Tom Broersen in GIM international, vol 30 n° 4 (April 2016)PermalinkOctree-based segmentation for terrestrial LiDAR point cloud data in industrial applications / Yun-Ting Su in ISPRS Journal of photogrammetry and remote sensing, vol 113 (March 2016)PermalinkPermalinkOne billion points in the cloud – an octree for efficient processing of 3D laser scans / Jan Elseberg in ISPRS Journal of photogrammetry and remote sensing, vol 76 (February 2013)PermalinkAn efficient point cloud management method based on a 3D R-tree / J. Gong in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 4 (April 2012)Permalink