Descripteur
Documents disponibles dans cette catégorie (16)



Etendre la recherche sur niveau(x) vers le bas
Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver / Oliver Montenbruck in Journal of geodesy, vol 95 n° 10 (October 2021)
![]()
[article]
Titre : Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver Type de document : Article/Communication Auteurs : Oliver Montenbruck, Auteur ; Stefan Hackel, Auteur ; Martin Wermuth, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 109 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] altimétrie satellitaire par laser
[Termes IGN] étalonnage en vol
[Termes IGN] océanographie spatiale
[Termes IGN] orbite précise
[Termes IGN] orbitographie
[Termes IGN] orbitographie par GNSS
[Termes IGN] récepteur Galileo
[Termes IGN] récepteur GPSRésumé : (auteur) The Sentinel-6 (or Jason-CS) altimetry mission provides a long-term extension of the Topex and Jason-1/2/3 missions for ocean surface topography monitoring. Analysis of altimeter data relies on highly-accurate knowledge of the orbital position and requires radial RMS orbit errors of less than 1.5 cm. For precise orbit determination (POD), the Sentinel-6A spacecraft is equipped with a dual-constellation GNSS receiver. We present the results of Sentinel-6A POD solutions for the first 6 months since launch and demonstrate a 1-cm consistency of ambiguity-fixed GPS-only and Galileo-only solutions with the dual-constellation product. A similar performance (1.3 cm 3D RMS) is achieved in the comparison of kinematic and reduced-dynamic orbits. While Galileo measurements exhibit 30–50% smaller RMS errors than those of GPS, the POD benefits most from the availability of an increased number of satellites in the combined dual-frequency solution. Considering obvious uncertainties in the pre-mission calibration of the GNSS receiver antenna, an independent inflight calibration of the phase centers for GPS and Galileo signal frequencies is required. As such, Galileo observations cannot provide independent scale information and the estimated orbital height is ultimately driven by the employed forces models and knowledge of the center-of-mass location within the spacecraft. Using satellite laser ranging (SLR) from selected high-performance stations, a better than 1 cm RMS consistency of SLR normal points with the GNSS-based orbits is obtained, which further improves to 6 mm RMS when adjusting site-specific corrections to station positions and ranging biases. For the radial orbit component, a bias of less than 1 mm is found from the SLR analysis relative to the mean height of 13 high-performance SLR stations. Overall, the reduced-dynamic orbit determination based on GPS and Galileo tracking is considered to readily meet the altimetry-related Sentinel-6 mission needs for RMS height errors of less than 1.5 cm. Numéro de notice : A2021-702 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01563-z Date de publication en ligne : 05/09/2021 En ligne : https://doi.org/10.1007/s00190-021-01563-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98585
in Journal of geodesy > vol 95 n° 10 (October 2021) . - n° 109[article]Determination of precise Galileo orbits using combined GNSS and SLR observations / Grzegorz Bury in GPS solutions, vol 25 n° 1 (January 2021)
![]()
[article]
Titre : Determination of precise Galileo orbits using combined GNSS and SLR observations Type de document : Article/Communication Auteurs : Grzegorz Bury, Auteur ; Krzysztof Sosnica, Auteur ; Radoslaw Zajdel, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] données GNSS
[Termes IGN] données TLS (télémétrie)
[Termes IGN] Galileo
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] orbite précise
[Termes IGN] orbitographie
[Termes IGN] pondérationRésumé : (auteur) Galileo satellites are equipped with laser retroreflector arrays for satellite laser ranging (SLR). In this study, we develop a methodology for the GNSS-SLR combination at the normal equation level with three different weighting strategies and evaluate the impact of laser observations on the determined Galileo orbits. We provide the optimum weighting scheme for precise orbit determination employing the co-location onboard Galileo. The combined GNSS-SLR solution diminishes the semimajor axis formal error by up to 62%, as well as reduces the dependency between values of formal errors and the elevation of the Sun above the orbital plane—the β angle. In the combined solution, the standard deviation of the SLR residuals decreases from 36.1 to 29.6 mm for Galileo-IOV satellites and |β|> 60°, when compared to GNSS-only solutions. Moreover, the bias of the Length-of-Day parameter is 20% lower for the combined solution when compared to the microwave one. As a result, the combination of GNSS and SLR observations provides promising results for future co-locations onboard the Galileo satellites for the orbit determination, realization of the terrestrial reference frames, and deriving geodetic parameters. Numéro de notice : A2021-008 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01045-3 Date de publication en ligne : 31/10/2020 En ligne : https://doi.org/10.1007/s10291-020-01045-3 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96298
in GPS solutions > vol 25 n° 1 (January 2021) . - n° 11[article]Integrated processing of ground- and space-based GPS observations: improving GPS satellite orbits observed with sparse ground networks / Wen Huang in Journal of geodesy, vol 94 n° 10 (October 2020)
![]()
[article]
Titre : Integrated processing of ground- and space-based GPS observations: improving GPS satellite orbits observed with sparse ground networks Type de document : Article/Communication Auteurs : Wen Huang, Auteur ; Benjamin Männel, Auteur ; Pierre Sakic-Kieffer, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 13 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] modèle d'orbite
[Termes IGN] orbite basse
[Termes IGN] orbite précise
[Termes IGN] orbitographie
[Termes IGN] orbitographie par GNSS
[Termes IGN] récepteur GPS
[Termes IGN] station GPSRésumé : (auteur) The precise orbit determination (POD) of Global Navigation Satellite System (GNSS) satellites and low Earth orbiters (LEOs) are usually performed independently. It is a potential way to improve the GNSS orbits by integrating LEOs onboard observations into the processing, especially for the developing GNSS, e.g., Galileo with a sparse sensor station network and Beidou with a regional distributed operating network. In recent years, few studies combined the processing of ground- and space-based GNSS observations. The integrated POD of GPS satellites and seven LEOs, including GRACE-A/B, OSTM/Jason-2, Jason-3 and, Swarm-A/B/C, is discussed in this study. GPS code and phase observations obtained by onboard GPS receivers of LEOs and ground-based receivers of the International GNSS Service (IGS) tracking network are used together in one least-squares adjustment. The POD solutions of the integrated processing with different subsets of LEOs and ground stations are analyzed in detail. The derived GPS satellite orbits are validated by comparing with the official IGS products and internal comparison based on the differences of overlapping orbits and satellite positions at the day-boundary epoch. The differences between the GPS satellite orbits derived based on a 26-station network and the official IGS products decrease from 37.5 to 23.9 mm (34% improvement) in 1D-mean RMS when adding seven LEOs. Both the number of the space-based observations and the LEO orbit geometry affect the GPS satellite orbits derived in the integrated processing. In this study, the latter one is proved to be more critical. By including three LEOs in three different orbital planes, the GPS satellite orbits improve more than from adding seven well-selected additional stations to the network. Experiments with a ten-station and regional network show an improvement of the GPS satellite orbits from about 25 cm to less than five centimeters in 1D-mean RMS after integrating the seven LEOs. Numéro de notice : A2020-630 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01424-1 Date de publication en ligne : 10/10/2020 En ligne : https://doi.org/10.1007/s00190-020-01424-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96049
in Journal of geodesy > vol 94 n° 10 (October 2020) . - 13 p.[article]GRACE-FO precise orbit determination and gravity recovery / Z. Kang in Journal of geodesy, vol 94 n° 9 (September 2020)
![]()
[article]
Titre : GRACE-FO precise orbit determination and gravity recovery Type de document : Article/Communication Auteurs : Z. Kang, Auteur ; S. Bettadpur, Auteur ; P. Nagel, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 85 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] bande K
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GRACE
[Termes IGN] double différence
[Termes IGN] interféromètre au laser
[Termes IGN] orbite précise
[Termes IGN] orbitographieRésumé : (auteur) The gravity recovery and climate experiment follow-on (GRACE-FO) satellites, launched in May of 2018, are equipped with geodetic quality GPS receivers for precise orbit determination (POD) and gravity recovery. The primary objective of the GRACE-FO mission is to map the time-variable and mean gravity field of the Earth. To achieve this goal, both GRACE-FO satellites are additionally equipped with a K-band ranging (KBR) system, accelerometers and star trackers. Data processing strategies, data weighting approaches and impacts of observation types and rates are investigated in order to determine the most efficient approach for processing GRACE-FO multi-type data for precise orbit determination and gravity recovery. Two GPS observation types, un-differenced (UD) and double-differenced (DD) observations in general can be used for GPS-based POD and gravity recovery. The GRACE-FO KBR observations are mainly used for gravity recovery, but they can be also used for POD to improve the relative orbit accuracy. The main purpose of this paper is to study the impacts of the DD, UD and KBR observations on GRACE-FO POD and gravity recovery. The precise orbit accuracy is assessed using several tests, which include analysis of orbital fits, satellite laser ranging residuals, KBR range residuals and orbit comparisons. The gravity recovery is validated by comparing different gravity solutions through coefficient-wise comparison, degree difference variances and water height variations over the whole Earth and selected area and river basins. Numéro de notice : A2020-542 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01414-3 Date de publication en ligne : 16/08/2020 En ligne : https://doi.org/10.1007/s00190-020-01414-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95744
in Journal of geodesy > vol 94 n° 9 (September 2020) . - n° 85[article]Galileo and QZSS precise orbit and clock determination using new satellite metadata / Xingxing Li in Journal of geodesy, vol 93 n° 8 (August 2019)
![]()
[article]
Titre : Galileo and QZSS precise orbit and clock determination using new satellite metadata Type de document : Article/Communication Auteurs : Xingxing Li, Auteur ; Yongqiang Yuan, Auteur ; Jiande Huang, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1123 - 1136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] centre de phase
[Termes IGN] constellation Galileo
[Termes IGN] données satellitaires
[Termes IGN] GIOVE (satellite)
[Termes IGN] horloge du satellite
[Termes IGN] lacet
[Termes IGN] métadonnées
[Termes IGN] modèle d'orbite
[Termes IGN] orbite précise
[Termes IGN] orbitographie
[Termes IGN] Quasi-Zenith Satellite System
[Termes IGN] rayonnement solaire
[Termes IGN] variance d'AllanRésumé : (auteur) During 2016–2018, satellite metadata/information including antenna parameters, attitude laws and physical characteristics such as mass, dimensions and optical properties were released for Galileo and QZSS (except for the QZS-1 optical coefficients). These metadata are critical for improving the accuracy of precise orbit and clock determination. In this contribution, we evaluate the benefits of these new metadata to orbit and clock in three aspects: the phase center offsets and variations (PCO and PCV), the yaw-attitude model and solar radiation pressure (SRP) model. The updating of Galileo PCO and PCV corrections, from the values estimated by Deutsches Zentrum für Luft- und Raumfahrt and Deutsches GeoForschungsZentrum to the chamber calibrations disclosed by new metadata, has only a slight influence on Galileo orbits, with overlap differences within only 1 mm. By modeling the yaw attitude of Galileo satellites and QZS-2 spacecraft (SVN J002) according to new published attitude laws, the residuals of ionosphere-free carrier-phase combinations can be obviously decreased in yaw maneuver seasons. With the new attitude models, the 3D overlap RMS in eclipse seasons can be decreased from 12.3 cm, 14.7 cm, 16.8 cm and 34.7 cm to 11.7 cm, 13.4 cm, 15.8 cm and 32.9 cm for Galileo In-Orbit Validation (IOV), Full Operational Capability (FOC), FOC in elliptical orbits (FOCe) and QZS-2 satellites, respectively. By applying the a priori box-wing SRP model with new satellite dimensions and optical coefficients, the 3D overlap RMS are 5.3 cm, 6.2 cm, 5.3 cm and 16.6 cm for Galileo IOV, FOCe, FOC and QZS-2 satellites, with improvements of 11.0%, 14.7%, 14.0% and 13.8% when compared with the updated Extended CODE Orbit Model (ECOM2). The satellite laser ranging (SLR) validation reveals that the a priori box-wing model has smaller mean biases of − 0.4 cm, − 0.4 cm and 0.6 cm for Galileo FOCe, FOC and QZS-2 satellites, while a slightly larger mean bias of − 1.0 cm is observed for Galileo IOV satellites. Moreover, the SLR residual dependencies of Galileo IOV and FOC satellites on the elongation angle almost vanish when the a priori box-wing SRP model is applied. As for satellite clocks, a visible bump appears in the Modified Allan deviation at integration time of 20,000 s for Galileo Passive Hydrogen Maser with ECOM2, while it almost vanishes when the a priori box-wing SRP model and new metadata are applied. The standard deviations of clock overlap can also be significantly reduced by using new metadata. Numéro de notice : A2019-383 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-019-01230-4 Date de publication en ligne : 02/02/2019 En ligne : https://doi.org/10.1007/s00190-019-01230-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93462
in Journal of geodesy > vol 93 n° 8 (August 2019) . - pp 1123 - 1136[article]Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning / Xingxing Li in Journal of geodesy, vol 93 n° 1 (January 2019)
PermalinkModeling tropospheric wet delays with dense and sparse network configurations for PPP-RTK / Paulo S. de Oliveira in GPS solutions, vol 21 n° 1 (January 2017)
PermalinkImpacts of real-time satellite clock errors on GPS precise point positioning-based troposphere zenith delay estimation / Junbo Shi in Journal of geodesy, vol 89 n° 8 (August 2015)
PermalinkGOCE: assessment of GPS-only gravity field determination / Adrian Jäggi in Journal of geodesy, vol 89 n° 1 (January 2015)
PermalinkPermalinkFormulation of distortion error for the line-of-sight (LOS) vector adjustment model and its role in restitution of SPOT imagery / Hyung-Sup Jung in ISPRS Journal of photogrammetry and remote sensing, vol 63 n° 6 (November - December 2008)
PermalinkInvestigation of physical sensor models for modelling SPOT 3 orbits / T. Kim in Photogrammetric record, vol 22 n° 119 (September - November 2007)
PermalinkTopex-Jason combined GPS-DORIS orbit determination in the TanDEM phase / Pascal Willis in Advances in space research, vol 31 n° 8 (14/03/2003)
PermalinkTraitement de données GPS en Antarctique : comment calculer les mouvements du sol / Marie-Noëlle Bouin (1998)
PermalinkModeling radiation forces acting on Topex-Poseidon for precision orbit determination / J.A. Marshall (1992)
Permalink