Descripteur
Documents disponibles dans cette catégorie (92)



Etendre la recherche sur niveau(x) vers le bas
Deep learning method for Chinese multisource point of interest matching / Pengpeng Li in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Deep learning method for Chinese multisource point of interest matching Type de document : Article/Communication Auteurs : Pengpeng Li, Auteur ; Jiping Liu, Auteur ; An Luo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage profond
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] inférence sémantique
[Termes IGN] information sémantique
[Termes IGN] point d'intérêt
[Termes IGN] représentation vectorielle
[Termes IGN] traitement du langage naturelRésumé : (auteur) Multisource point of interest (POI) matching refers to the pairing of POIs that refer to the same geographic entity in different data sources. This also constitutes the core issue in geospatial data fusion and update. The existing methods cannot effectively capture the complex semantic information from a text, and the manually defined rules largely affect matching results. This study developed a multisource POI matching method based on deep learning that transforms the POI pair matching problem into a binary classification problem. First, we used three different Chinese word segmentation methods to segment the POI text attributes and used the segmentation results to train the Word2Vec model to generate the corresponding word vector representation. Then, we used the text convolutional neural network (Text-CNN) and multilayer perceptron (MLP) to extract the POI attributes' features and generate the corresponding feature vector representation. Finally, we used the enhanced sequential inference model (ESIM) to perform local inference and inference combination on each attribute to realize the classification of POI pairs. We used the POI dataset containing Baidu Map, Tencent Map, and Gaode Map from Chengdu to train, verify, and test the model. The experimental results show that the matching precision, recall rate, and F1 score of the proposed method exceed 98% on the test set, and it is significantly better than the existing matching methods. Numéro de notice : A2022-513 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101821 Date de publication en ligne : 18/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101053
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101821[article]A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)
![]()
[article]
Titre : A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Bo Zhou, Auteur ; Shuai Jin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire minimum
[Termes IGN] distribution spatiale
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] réseau neuronal de graphes
[Termes IGN] taxinomie
[Termes IGN] trafic routier
[Termes IGN] triangulation de Delaunay
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) Land-use classification plays an important role in urban planning and resource allocation and had contributed to a wide range of urban studies and investigations. With the development of crowdsourcing technology and map services, points of interest (POIs) have been widely used for recognizing urban land-use types. However, current research methods for land-use classifications have been limited to extracting the spatial relationship of POIs in research units. To close this gap, this study uses a graph-based data structure to describe the POIs in research units, with graph convolutional networks (GCNs) being introduced to extract the spatial context and urban land-use classification. First, urban scenes are built by considering the spatial context of POIs. Second, a graph structure is used to express the scenes, where POIs are treated as graph nodes. The spatial distribution relationship of POIs is considered to be the graph's edges. Third, a GCN model is designed to extract the spatial context of the scene by aggregating the information of adjacent nodes within the graph and urban land-use classification. Thus, the land-use classification can be treated as a classification on a graphic level through deep learning. Moreover, the POI spatial context can be effectively extracted during classification. Experimental results and comparative experiments confirm the effectiveness of the proposed method. Numéro de notice : A2022-460 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101807 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100622
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101807[article]Navigation network derivation for QR code-based indoor pedestrian path planning / Jinjin Yan in Transactions in GIS, vol 26 n° 3 (May 2022)
![]()
[article]
Titre : Navigation network derivation for QR code-based indoor pedestrian path planning Type de document : Article/Communication Auteurs : Jinjin Yan, Auteur ; Jinwoo Lee, Auteur ; Sisi Zlatanova, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1240 - 1255 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] batiment commercial
[Termes IGN] bâtiment public
[Termes IGN] navigation pédestre
[Termes IGN] noeud
[Termes IGN] point d'intérêt
[Termes IGN] positionnement en intérieur
[Termes IGN] QR code
[Termes IGN] scène intérieure
[Termes IGN] trajet (mobilité)Résumé : (auteur) With the development of cities, the indoor structures of contemporary public or commercial buildings are becoming increasingly complex. Accordingly, the need for indoor navigation has arisen. Among the indoor positioning technologies, quick response (QR) code, a low-cost, easily deployable, flexible, and efficient approach, has been used for indoor positioning and navigation purposes. A navigation network (model) is a precondition for pedestrian navigation path planning. However, no thorough research has been completed to investigate the relationship between navigation networks and locations of QR codes, which may cause ambiguities when deciding the closest node from the network that should be used for path computation. Specifically, QR codes are generally placed according to preferences or certain specifications whereas current agreed navigation network derivation approaches do not consider that. This article presents a navigation network derivation approach to address the issue by integrating QR code locations as nodes in navigation networks. The present approach is demonstrated in a shopping mall case. The results show that the approach can overcome the above-mentioned issue for indoor pedestrian path planning based on the QR code localization. Numéro de notice : A2022-476 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12912 Date de publication en ligne : 10/04/2022 En ligne : https://doi.org/10.1111/tgis.12912 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100823
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1240 - 1255[article]Unsupervised multi-view CNN for salient view selection and 3D interest point detection / Ran Song in International journal of computer vision, vol 130 n° 5 (May 2022)
![]()
[article]
Titre : Unsupervised multi-view CNN for salient view selection and 3D interest point detection Type de document : Article/Communication Auteurs : Ran Song, Auteur ; Wei Zhang, Auteur ; Yitian Zhao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1210 - 1227 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] objet 3D
[Termes IGN] point d'intérêt
[Termes IGN] saillanceRésumé : (auteur) We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object consistency as it states that a 3D object and its projected 2D views always belong to the same object class. To validate its effectiveness, we design a multi-view CNN instantiating it for salient view selection and interest point detection of 3D objects, which quintessentially cannot be handled by supervised learning due to the difficulty of collecting sufficient and consistent training data. Our unsupervised multi-view CNN, namely UMVCNN, branches off two channels which encode the knowledge within each 2D view and the 3D object respectively and also exploits both intra-view and inter-view knowledge of the object. It ends with a new loss layer which formulates the view-object consistency by impelling the two channels to generate consistent classification outcomes. The UMVCNN is then integrated with a global distinction adjustment scheme to incorporate global cues into salient view selection. We evaluate our method for salient view section both qualitatively and quantitatively, demonstrating its superiority over several state-of-the-art methods. In addition, we showcase that our method can be used to select salient views of 3D scenes containing multiple objects. We also develop a method based on the UMVCNN for 3D interest point detection and conduct comparative evaluations on a publicly available benchmark, which shows that the UMVCNN is amenable to different 3D shape understanding tasks. Numéro de notice : A2022-415 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01592-x Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1007/s11263-022-01592-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100771
in International journal of computer vision > vol 130 n° 5 (May 2022) . - pp 1210 - 1227[article]Identification and classification of routine locations using anonymized mobile communication data / Gonçalo Ferreira in ISPRS International journal of geo-information, vol 11 n° 4 (April 2022)
![]()
[article]
Titre : Identification and classification of routine locations using anonymized mobile communication data Type de document : Article/Communication Auteurs : Gonçalo Ferreira, Auteur ; Ana Alves, Auteur ; Marco Veloso, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 228 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification barycentrique
[Termes IGN] données spatiotemporelles
[Termes IGN] migration pendulaire
[Termes IGN] mobilité urbaine
[Termes IGN] origine - destination
[Termes IGN] point d'intérêt
[Termes IGN] Portugal
[Termes IGN] précision sémantique
[Termes IGN] statistiques d'appels détaillés
[Termes IGN] téléphonie mobileRésumé : (auteur) Digital location traces are a relevant source of insights into how citizens experience their cities. Previous works using call detail records (CDRs) tend to focus on modeling the spatial and temporal patterns of human mobility, not paying much attention to the semantics of places, thus failing to model and enhance the understanding of the motivations behind people’s mobility. In this paper, we applied a methodology for identifying individual users’ routine locations and propose an approach for attaching semantic meaning to these locations. Specifically, we used circular sectors that correspond to cellular antennas’ signal areas. In those areas, we found that all contained points of interest (POIs), extracted their most important attributes (opening hours, check-ins, category) and incorporated them into the classification. We conducted experiments with real-world data from Coimbra, Portugal, and the initial experimental results demonstrate the effectiveness of the proposed methodology to infer activities in the user’s routine areas. Numéro de notice : A2022-419 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11040228 Date de publication en ligne : 29/03/2022 En ligne : https://doi.org/10.3390/ijgi11040228 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100306
in ISPRS International journal of geo-information > vol 11 n° 4 (April 2022) . - n° 228[article]Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations / Ruozhen Cheng in Transactions in GIS, vol 26 n° 1 (February 2022)
PermalinkCultivating historical heritage area vitality using urban morphology approach based on big data and machine learning / Jiayu Wu in Computers, Environment and Urban Systems, vol 91 (January 2022)
PermalinkPoint-of-interest (POI) data validation methods: An urban case study / Lih Wei Yeow in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
PermalinkSemantic-aware label placement for augmented reality in street view / Jianqing Jia in The Visual Computer, vol 37 n° 7 (July 2021)
PermalinkDynamic optimization models for displaying outdoor advertisement at the right time and place / Meng Huang in International journal of geographical information science IJGIS, vol 35 n° 6 (June 2021)
PermalinkDecision-level and feature-level integration of remote sensing and geospatial big data for urban land use mapping / Jiadi Yin in Remote sensing, vol 13 n° 8 (April-2 2021)
PermalinkA BiLSTM-CNN model for predicting users’ next locations based on geotagged social media / Yi Bao in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
PermalinkUtilizing urban geospatial data to understand heritage attractiveness in Amsterdam / Sevim Sezi Karayazi in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
PermalinkA GIS-based system for spatial-temporal availability evaluation of the open spaces used as emergency shelters: The case of Victoria, British Columbia, Canada / Yibing Yao in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
PermalinkJoint promotion partner recommendation systems using data from location-based social networks / Yi-Chung Chen in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
Permalink